Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(6): e0029824, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38695606

RESUMO

The cyanosiphophage Mic1 specifically infects the bloom-forming Microcystis aeruginosa FACHB 1339 from Lake Chaohu, China. Previous genomic analysis showed that its 92,627 bp double-stranded DNA genome consists of 98 putative open reading frames, 63% of which are of unknown function. Here, we investigated the transcriptome dynamics of Mic1 and its host using RNA sequencing. In the early, middle, and late phases of the 10 h lytic cycle, the Mic1 genes are sequentially expressed and could be further temporally grouped into two distinct clusters in each phase. Notably, six early genes, including gp49 that encodes a TnpB-like transposase, immediately reach the highest transcriptional level in half an hour, representing a pioneer cluster that rapidly regulates and redirects host metabolism toward the phage. An in-depth analysis of the host transcriptomic profile in response to Mic1 infection revealed significant upregulation of a polyketide synthase pathway and a type III-B CRISPR system, accompanied by moderate downregulation of the photosynthesis and key metabolism pathways. The constant increase of phage transcripts and relatively low replacement rate over the host transcripts indicated that Mic1 utilizes a unique strategy to gradually take over a small portion of host metabolism pathways after infection. In addition, genomic analysis of a less-infective Mic1 and a Mic1-resistant host strain further confirmed their dynamic interplay and coevolution via the frequent horizontal gene transfer. These findings provide insights into the mutual benefit and symbiosis of the highly polymorphic cyanobacteria M. aeruginosa and cyanophages. IMPORTANCE: The highly polymorphic Microcystis aeruginosa is one of the predominant bloom-forming cyanobacteria in eutrophic freshwater bodies and is infected by diverse and abundant cyanophages. The presence of a large number of defense systems in M. aeruginosa genome suggests a dynamic interplay and coevolution with the cyanophages. In this study, we investigated the temporal gene expression pattern of Mic1 after infection and the corresponding transcriptional responses of its host. Moreover, the identification of a less-infective Mic1 and a Mic1-resistant host strain provided the evolved genes in the phage-host coevolution during the multiple-generation cultivation in the laboratory. Our findings enrich the knowledge on the interplay and coevolution of M. aeruginosa and its cyanophages and lay the foundation for the future application of cyanophage as a potential eco-friendly and bio-safe agent in controlling the succession of harmful cyanobacterial blooms.


Assuntos
Bacteriófagos , Microcystis , Microcystis/virologia , Microcystis/genética , Microcystis/metabolismo , Bacteriófagos/genética , Bacteriófagos/fisiologia , China , Transcriptoma , Lagos/microbiologia , Lagos/virologia , Genoma Viral/genética , Evolução Molecular
2.
Huan Jing Ke Xue ; 44(2): 730-739, 2023 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-36775597

RESUMO

In order to explore the characteristics of exhaust gas emissions, environmental impact, and human health risks in the pesticide manufacturing industry, two typical pesticide manufacturing enterprises were selected as the research objects, and samples were collected and analyzed for all exhaust pipes of each enterprise. The following results were noted:there were certain differences in the pollutants produced by different enterprises due to different products and production links. The main pollutants in enterprise A were ammonia and VOCs. The concentration of ammonia in enterprise A ranged from 0 to 847.83 mg·m-3, and the concentration of VOCs ranged from 4.21 to 91.68 mg·m-3. The main pollutants in enterprise B were VOCs, and the concentration of VOCs ranged from 3.37 to 197.30 mg·m-3. The ozone formation potential (OFP) ranged from 1.96 to 107.24 mg·m-3. Substances that required further attention in terms of ozone formation potential:enterprise A mainly included ethanol, methanol, toluene, xylene, and other substances; enterprise B mainly included 1, 1-dichloroethylene, 1, 2-dichloroethane, toluene, methylal, and other substances. The secondary organic aerosol formation potential (SOAFP) ranged from 0.94 to 74.72 mg·m-3. The main contributors to the secondary organic aerosol formation potential were aromatic hydrocarbons and oxygen-containing organics. In addition, ammonia also required additional attention. The odorous substances in pesticide enterprises were more complex, and there were differences in the exhaust pipes of different enterprises and different production links of the same enterprise. There were certain health risks in the gas pollutants of pesticide enterprises. The main carcinogens were 1, 2-dichloroethane, trichloroethylene, tetrachloroethylene, methyl chloride, and benzene. In addition, pyridine and hexachloroethane had certain non-carcinogenic risks in pesticide production enterprises.

3.
Environ Microbiome ; 18(1): 3, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639816

RESUMO

BACKGROUND: Along with the fast development and urbanization in developing countries, the waterbodies aside the growing cities become heavily polluted and highly eutrophic, thus leading to the seasonal outbreak of cyanobacterial bloom. Systematic isolation and characterization of freshwater cyanophages might provide a biological solution to control the awful blooms. However, genomic sequences and related investigations on the freshwater cyanophages remain very limited to date. RESULTS: Following our recently reported five cyanophages Pam1~Pam5 from Lake Chaohu in China, here we isolated another five cyanophages, termed Pan1~Pan5, which infect the cyanobacterium Pseudanabaena sp. Chao 1811. Whole-genome sequencing showed that they all contain a double-stranded DNA genome of 37.2 to 72.0 kb in length, with less than half of the putative open reading frames annotated with known functions. Remarkably, the siphophage Pan1 encodes an auxiliary metabolic gene phoH and constitutes, together with the host, a complete queuosine modification pathway. Proteomic analyses revealed that although Pan1~Pan5 are distinct from each other in evolution, Pan1 and Pan3 are somewhat similar to our previously identified cyanophages Pam3 and Pam1 at the genomic level, respectively. Moreover, phylogenetic analyses suggested that Pan1 resembles the α-proteobacterial phage vB_DshS-R5C, revealing direct evidence for phage-mediated horizontal gene transfer between cyanobacteria and α-proteobacteria. CONCLUSION: In addition to the previous reports of Pam1~Pam5, the present findings on Pan1~Pan5 largely enrich the library of reference freshwater cyanophages. The abundant genomic information provides a pool to identify novel genes and proteins of unknown function. Moreover, we found for the first time the evolutionary traces in the cyanophage that horizontal gene transfer might occur at the level of not only inter-species, but even inter-phylum. It indicates that the bacteriophage or cyanophage could be developed as a powerful tool for gene manipulation among various species or phyla.

4.
Proc Natl Acad Sci U S A ; 120(4): e2213727120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36656854

RESUMO

The myophage possesses a contractile tail that penetrates its host cell envelope. Except for investigations on the bacteriophage T4 with a rather complicated structure, the assembly pattern and tail contraction mechanism of myophage remain largely unknown. Here, we present the fine structure of a freshwater Myoviridae cyanophage Pam3, which has an icosahedral capsid of ~680 Å in diameter, connected via a three-section neck to an 840-Å-long contractile tail, ending with a three-module baseplate composed of only six protein components. This simplified baseplate consists of a central hub-spike surrounded by six wedge heterotriplexes, to which twelve tail fibers are covalently attached via disulfide bonds in alternating upward and downward configurations. In vitro reduction assays revealed a putative redox-dependent mechanism of baseplate assembly and tail sheath contraction. These findings establish a minimal myophage that might become a user-friendly chassis phage in synthetic biology.


Assuntos
Myoviridae , Montagem de Vírus , Bacteriófago T4/química , Capsídeo , Proteínas do Capsídeo/química , Microscopia Crioeletrônica , Myoviridae/química
5.
Microbiome ; 10(1): 128, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35974417

RESUMO

BACKGROUND: As important producers using photosynthesis on Earth, cyanobacteria contribute to the oxygenation of atmosphere and the primary production of biosphere. However, due to the eutrophication of urban waterbodies and global warming, uncontrollable growth of cyanobacteria usually leads to the seasonal outbreak of cyanobacterial blooms. Cyanophages, a group of viruses that specifically infect and lyse cyanobacteria, are considered as potential environment-friendly agents to control the harmful blooms. Compared to the marine counterparts, only a few freshwater cyanophages have been isolated and genome sequenced to date, largely limiting their characterizations and applications. RESULTS: Here, we isolated five freshwater cyanophages varying in tail morphology, termed Pam1~Pam5, all of which infect the cyanobacterium Pseudanabaena mucicola Chao 1806 that was isolated from the bloom-suffering Lake Chaohu in Anhui, China. The whole-genome sequencing showed that cyanophages Pam1~Pam5 all contain a dsDNA genome, varying in size from 36 to 142 Kb. Phylogenetic analyses suggested that Pam1~Pam5 possess different DNA packaging mechanisms and are evolutionarily distinct from each other. Notably, Pam1 and Pam5 have lysogeny-associated gene clusters, whereas Pam2 possesses 9 punctuated DNA segments identical to the CRISPR spacers in the host genome. Metagenomic data-based calculation of the relative abundance of Pam1~Pam5 at the Nanfei estuary towards the Lake Chaohu revealed that the short-tailed Pam1 and Pam5 account for the majority of the five cyanophages. Moreover, comparative analyses of the reference genomes of Pam1~Pam5 and previously reported cyanophages enabled us to identify three circular and seven linear contigs of virtual freshwater cyanophages from the metagenomic data of the Lake Chaohu. CONCLUSIONS: We propose a high-throughput strategy to systematically identify cyanophages based on the currently available metagenomic data and the very limited reference genomes of experimentally isolated cyanophages. This strategy could be applied to mine the complete or partial genomes of unculturable bacteriophages and viruses. Transformation of the synthesized whole genomes of these virtual phages/viruses to proper hosts will enable the rescue of bona fide viral particles and eventually enrich the library of microorganisms that exist on Earth. Video abstract.


Assuntos
Bacteriófagos , Genoma Viral , Mineração de Dados , Água Doce/microbiologia , Genoma Viral/genética , Metagenômica , Oligopeptídeos , Filogenia , Receptor 2 Toll-Like/agonistas , Receptor Toll-Like 9/agonistas
6.
Structure ; 30(2): 240-251.e4, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34727518

RESUMO

Despite previous structural analyses of bacteriophages, quite little is known about the structures and assembly patterns of cyanophages. Using cryo-EM combined with crystallography, we solve the near-atomic-resolution structure of a freshwater short-tailed cyanophage, Pam1, which comprises a 400-Å-long tail and an icosahedral capsid of 650 Å in diameter. The outer capsid surface is reinforced by trimeric cement proteins with a ß-sandwich fold, which structurally resemble the distal motif of Pam1's tailspike, suggesting its potential role in host recognition. At the portal vertex, the dodecameric portal and connected adaptor, followed by a hexameric needle head, form a DNA ejection channel, which is sealed by a trimeric needle. Moreover, we identify a right-handed rifling pattern that might help DNA to revolve along the wall of the ejection channel. Our study reveals the precise assembly pattern of a cyanophage and lays the foundation to support its practical biotechnological and environmental applications.


Assuntos
Bacteriófagos/química , Capsídeo/química , Cianobactérias/virologia , Sequenciamento Completo do Genoma/métodos , Microscopia Crioeletrônica , Cristalografia por Raios X , Tamanho do Genoma , Genoma Viral , Modelos Moleculares , Conformação Molecular , Montagem de Vírus
7.
Nat Plants ; 6(6): 708-717, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32451445

RESUMO

The folding and assembly of RuBisCO, the most abundant enzyme in nature, needs a series of chaperones, including the RuBisCO accumulation factor Raf1, which is highly conserved in cyanobacteria and plants. Here, we report the crystal structures of Raf1 from cyanobacteria Anabaena sp. PCC 7120 and its complex with RuBisCO large subunit RbcL. Structural analyses and biochemical assays reveal that each Raf1 dimer captures an RbcL dimer, with the C-terminal tail inserting into the catalytic pocket, and further mediates the assembly of RbcL dimers to form the octameric core of RuBisCO. Furthermore, the cryo-electron microscopy structures of the RbcL-Raf1-RbcS assembly intermediates enable us to see a dynamic assembly process from RbcL8Raf18 to the holoenzyme RbcL8RbcS8. In vitro assays also indicate that Raf1 can attenuate and reverse CcmM-mediated cyanobacterial RuBisCO condensation. Combined with previous findings, we propose a putative model for the assembly of cyanobacterial RuBisCO coordinated by the chaperone Raf1.


Assuntos
Anabaena/genética , Chaperonas Moleculares/genética , Ribulose-Bifosfato Carboxilase/genética , Sequência de Aminoácidos , Anabaena/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrutura Secundária de Proteína , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo , Alinhamento de Sequência
8.
Front Microbiol ; 11: 484, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32322241

RESUMO

Lake Chaohu, one of the five largest freshwater lakes in China, has been suffering from severe cyanobacterial blooms in the summer for many years. Cyanophages, the viruses that specifically infect cyanobacteria, play a key role in modulating cyanobacterial population, and thus regulate the emergence and decline of cyanobacterial blooms. Here we report a long-tailed cyanophage isolated from Lake Chaohu, termed Mic1, which specifically infects the cyanobacterium Microcystis aeruginosa. Mic1 has an icosahedral head of 88 nm in diameter and a long flexible tail of 400 nm. It possesses a circular genome of 92,627 bp, which contains 98 putative open reading frames. Genome sequence analysis enabled us to define a novel terminase large subunit that consists of two types of intein, indicating that the genome packaging of Mic1 is under fine control via posttranslational maturation of the terminase. Moreover, phylogenetic analysis suggested Mic1 and mitochondria share a common evolutionary origin of DNA polymerase γ gene. All together, these findings provided a start-point for investigating the co-evolution of cyanophages and its cyanobacterial hosts.

9.
Proteins ; 88(9): 1226-1232, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32337767

RESUMO

Cyanophages, widespread in aquatic systems, are a class of viruses that specifically infect cyanobacteria. Though they play important roles in modulating the homeostasis of cyanobacterial populations, little is known about the freshwater cyanophages, especially those hypothetical proteins of unknown function. Mic1 is a freshwater siphocyanophage isolated from the Lake Chaohu. It encodes three hypothetical proteins Gp65, Gp66, and Gp72, which share an identity of 61.6% to 83%. However, we find these three homologous proteins differ from each other in oligomeric state. Moreover, we solve the crystal structure of Gp72 at 2.3 Å, which represents a novel fold in the α + ß class. Structural analyses combined with redox assays enable us to propose a model of disulfide bond mediated oligomerization for Gp72. Altogether, these findings provide structural and biochemical basis for further investigations on the freshwater cyanophage Mic1.


Assuntos
Bacteriófagos/química , Cianobactérias/virologia , Dissulfetos/química , Proteínas Virais/química , Sequência de Aminoácidos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Dissulfetos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Água Doce/microbiologia , Água Doce/virologia , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Modelos Moleculares , Oxirredução , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Proteínas Virais/genética , Proteínas Virais/metabolismo
10.
Structure ; 27(10): 1508-1516.e3, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31378451

RESUMO

Cyanobacteria are the most abundant photosynthetic microorganisms, the global distribution of which is mainly regulated by the corresponding cyanophages. A systematic screening of water samples in the Lake Chaohu enabled us to isolate a freshwater siphocyanophage that infects Microcystis wesenbergii, thus termed Mic1. Using cryoelectron microscopy, we solved the 3.5-Å structure of Mic1 capsid. The major capsid protein gp40 of an HK97-like fold forms two types of capsomers, hexons and pentons. The capsomers interact with each other via the interweaved N-terminal arms of gp40 in addition to a tail-in-mouth joint along the three-fold symmetric axis, resulting in the assembly of capsid in a mortise-and-tenon pattern. The novel-fold cement protein gp47 sticks at the two-fold symmetric axis and further fixes the capsid. These findings provide structural insights into the assembly of cyanophages, and set up a platform to explore the mechanism of specific interactions and co-evolution with cyanobacteria.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Microcystis/virologia , Siphoviridae/metabolismo , Microscopia Crioeletrônica , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica , Siphoviridae/química
11.
Dev Comp Immunol ; 82: 49-54, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29317232

RESUMO

Following the Aeromonas hydrophila aerolysin, various aerolysin-like pore-forming proteins have been identified from bacteria to vertebrates. We have recently reported the mechanism of receptor recognition and in vitro pore-formation of a zebrafish aerolysin-like protein Dln1/Aep1. However, the physiological function of Aep1 remains unknown. Here we detected that aep1 gene is constitutively expressed in various immune-related tissues of adult zebrafish; and moreover, its expression is significantly up-regulated upon bacterial challenge, indicating its involvement in antimicrobial infection. Pre-injection of recombinant Aep1 into the infected zebrafish greatly accelerated the clearance of bacteria, resulting in significantly increased survival rate. Meanwhile, the induced expression of cytokines such as interleukin IL-1ß and tumor necrosis factor TNF-α in zebrafish upon injection of recombinant Aep1 suggested that Aep1 may be a pro-inflammatory protein that triggers the antimicrobial immune responses. However, compared to the overproduction of these cytokines in the infected zebrafish, pre-injection of Aep1 could significantly reduce the expression level of these cytokines, accompanying with a reduced bacterial load. Moreover, the expression profiles through the developmental stages of zebrafish demonstrated that aep1 is activated at the very early stage prior to the maturation of adaptive immune system. Altogether, our findings proved that Aep1 is an innate immune molecule that prevents the bacterial infection.


Assuntos
Toxinas Bacterianas/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/imunologia , Imunidade Adaptativa/genética , Aeromonas hydrophila/genética , Animais , Toxinas Bacterianas/genética , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Imunidade Inata , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , Filogenia , Proteínas Citotóxicas Formadoras de Poros/genética , Fator de Necrose Tumoral alfa/metabolismo , Proteínas de Peixe-Zebra/genética
12.
Proc Natl Acad Sci U S A ; 115(2): 403-408, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29279392

RESUMO

The coordination of carbon and nitrogen metabolism is essential for bacteria to adapt to nutritional variations in the environment, but the underlying mechanism remains poorly understood. In autotrophic cyanobacteria, high CO2 levels favor the carboxylase activity of ribulose 1,5 bisphosphate carboxylase/oxygenase (RuBisCO) to produce 3-phosphoglycerate, whereas low CO2 levels promote the oxygenase activity of RuBisCO, leading to 2-phosphoglycolate (2-PG) production. Thus, the 2-PG level is reversely correlated with that of 2-oxoglutarate (2-OG), which accumulates under a high carbon/nitrogen ratio and acts as a nitrogen-starvation signal. The LysR-type transcriptional repressor NAD(P)H dehydrogenase regulator (NdhR) controls the expression of genes related to carbon metabolism. Based on genetic and biochemical studies, we report here that 2-PG is an inducer of NdhR, while 2-OG is a corepressor, as found previously. Furthermore, structural analyses indicate that binding of 2-OG at the interface between the two regulatory domains (RD) allows the NdhR tetramer to adopt a repressor conformation, whereas 2-PG binding to an intradomain cleft of each RD triggers drastic conformational changes leading to the dissociation of NdhR from its target DNA. We further confirmed the effect of 2-PG or 2-OG levels on the transcription of the NdhR regulon. Together with previous findings, we propose that NdhR can sense 2-OG from the Krebs cycle and 2-PG from photorespiration, two key metabolites that function together as indicators of intracellular carbon/nitrogen status, thus representing a fine sensor for the coordination of carbon and nitrogen metabolism in cyanobacteria.


Assuntos
Carbono/metabolismo , Cianobactérias/metabolismo , Genes Reguladores , NAD(P)H Desidrogenase (Quinona)/metabolismo , Nitrogênio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Cianobactérias/genética , Regulação Bacteriana da Expressão Gênica , Glicolatos/metabolismo , Ácidos Cetoglutáricos/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Transdução de Sinais
13.
Exp Ther Med ; 14(1): 848-854, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28673009

RESUMO

Oleanolic acid (OL) is a pentacyclic triterpene compound used for the treatment of hepatitis, liver fibrosis and liver cirrhosis. In China, there is no published research on the effect or biological utilization of OL on liver diseases. The aim of the present study was to investigate the protective effects of OL against diabetic cardiomyopathy and its possible mechanism. A rat model of diabetes was established using streptozotocin and the effect of OL on diabetic cardiomyopathy (DCM) was evaluated. The results demonstrated that OL significantly reversed the DCM-induced changes to body weight, heart rate, echocardiography and hemodynamics, phosphorylated-glycogen synthase (GS) and glycogen phosphorylase (GP) activity in diabetic rats (all P<0.01). Treatment of diabetic rats with OL significantly inhibited oxidative stress and activated heme oxygenase (HO)-1/nuclear factor erythroid 2 (Nrf2) signaling in a rat model of diabetes (both P<0.01). The results of the present study indicate that OL protects against DCM through the HO-1/Nrf2 and insulin modulating GS/GP signaling pathways.

14.
J Surg Res ; 214: 69-78, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28624062

RESUMO

BACKGROUND: Renal ischemia/reperfusion (I/R)-induced acute kidney injury remains to be a troublesome condition in clinical practice. Although the exact molecular mechanisms underlying renal I/R injury are incompletely understood, the deleterious progress of renal I/R injury involves inflammation, apoptosis, and oxidative stress. Diosmetin is a member of the flavonoid glycosides family, which suppresses the inflammatory response and cellular apoptosis and enhances antioxidant activity. The purpose of this study was to investigate the protective effect of diosmetin on I/R-induced renal injury in mice. METHODS: Thirty BALB/c mice were randomly divided into five groups. Four groups of mice received diosmetin (0.25, 0.5, and 1 mg/kg) or vehicle (I/R group) before ischemia. Another group received vehicle without ischemia to serve as a negative control (sham-operated group). Twenty-four hours after reperfusion, serum and renal tissues were harvested to evaluate renal function and histopathologic features. In addition, the expression of inflammation-related proteins, apoptotic molecules, and antioxidant enzymes was analyzed. RESULTS: Compared with sham mice, the I/R group significantly exacerbated renal function and renal tube architecture and increased the inflammatory response and renal tubule apoptosis. Nevertheless, pretreatment with diosmetin reversed these changes. In addition, diosmetin treatment resulted in a marked increase in antioxidant protein expression compared with I/R mice. CONCLUSIONS: The renoprotective effects of diosmetin involved suppression of the nuclear factor-κB and mitochondrial apoptosis pathways, as well as activation of the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 pathway. Diosmetin has significant potential as a therapeutic intervention to ameliorate renal injury after renal I/R.


Assuntos
Injúria Renal Aguda/prevenção & controle , Flavonoides/uso terapêutico , Substâncias Protetoras/uso terapêutico , Traumatismo por Reperfusão/prevenção & controle , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Animais , Biomarcadores/metabolismo , Western Blotting , Esquema de Medicação , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real , Traumatismo por Reperfusão/metabolismo , Resultado do Tratamento
15.
Nutrients ; 9(4)2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28425936

RESUMO

Renal ischemia/reperfusion (I/R) injury continues to be a complicated situation in clinical practice. Genistein, the main isoflavone found in soy products, is known to possess a wide spectrum of biochemical and pharmacological activities. However, the protective effect of genistein on renal I/R injury has not been well investigated. In the current study, we explore whether genistein exhibits its renal-protective effects through SIRT1 (Sirtuin 1) in I/R-induced mice model. We found the treatment of genistein significantly reduced renal I/R-induced cell death, simultaneously stimulating renal cell proliferation. Meanwhile, SIRT1 expression was up-regulated following the administration of genistein in renal region. Furthermore, pharmacological inhibition or shRNA-mediated depletion of SIRT1 significantly reversed the protective effect of genistein on renal dysfunction, cellular damage, apoptosis, and proliferation following I/R injury, suggesting an indispensible role of the increased SIRT1 expression and activity in this process. Meanwhile, the reduced p53 and p21 expression and increased PCNA (Proliferating Cell Nuclear Antigen) expression were blocked after the depletion of SIRT1 compared with the genistein treatment group in the renal I/R process. Hence, our results provided further experimental basis for the potential use of genistein for the treatment of kidney disease with deficiency of SIRT1 activity.


Assuntos
Genisteína/farmacologia , Nefropatias/tratamento farmacológico , Rim/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Sirtuína 1/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Modelos Animais de Doenças , Rim/fisiopatologia , Camundongos , Camundongos Endogâmicos BALB C , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Traumatismo por Reperfusão/complicações , Sirtuína 1/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
16.
J Biol Chem ; 291(49): 25667-25677, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27777307

RESUMO

Invertases catalyze the hydrolysis of sucrose to glucose and fructose, thereby playing a key role in primary metabolism and plant development. According to the optimum pH, invertases are classified into acid invertases (Ac-Invs) and alkaline/neutral invertases (A/N-Invs), which share no sequence homology. Compared with Ac-Invs that have been extensively studied, the structure and catalytic mechanism of A/N-Invs remain unknown. Here we report the crystal structures of Anabaena alkaline invertase InvA, which was proposed to be the ancestor of modern plant A/N-Invs. These structures are the first in the GH100 family. InvA exists as a hexamer in both crystal and solution. Each subunit consists of an (α/α)6 barrel core structure in addition to an insertion of three helices. A couple of structures in complex with the substrate or products enabled us to assign the subsites -1 and +1 specifically binding glucose and fructose, respectively. Structural comparison combined with enzymatic assays indicated that Asp-188 and Glu-414 are putative catalytic residues. Further analysis of the substrate binding pocket demonstrated that InvA possesses a stringent substrate specificity toward the α1,2-glycosidic bond of sucrose. Together, we suggest that InvA and homologs represent a novel family of glucosidases.


Assuntos
Anabaena/enzimologia , Proteínas de Bactérias/química , beta-Frutofuranosidase/química , Anabaena/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Frutose/química , Frutose/metabolismo , Glucose/química , Glucose/metabolismo , Domínios Proteicos , Sacarose/química , Sacarose/metabolismo , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
17.
Nucleic Acids Res ; 44(8): 3936-45, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-26939889

RESUMO

Despite over 3300 protein-DNA complex structures have been reported in the past decades, there remain some unknown recognition patterns between protein and target DNA. The silkgland-specific transcription factor FMBP-1 from the silkworm Bombyx mori contains a unique DNA-binding domain of four tandem STPRs, namely the score and three amino acid peptide repeats. Here we report three structures of this STPR domain (termed BmSTPR) in complex with DNA of various lengths. In the presence of target DNA, BmSTPR adopts a zig-zag structure of three or four tandem α-helices that run along the major groove of DNA. Structural analyses combined with binding assays indicate BmSTPR prefers the AT-rich sequences, with each α-helix covering a DNA sequence of 4 bp. The successive AT-rich DNAs adopt a wider major groove, which is in complementary in shape and size to the tandem α-helices of BmSTPR. Substitutions of DNA sequences and affinity comparison further prove that BmSTPR recognizes the major groove mainly via shape readout. Multiple-sequence alignment suggests this unique DNA-binding pattern should be highly conserved for the STPR domain containing proteins which are widespread in animals. Together, our findings provide structural insights into the specific interactions between a novel DNA-binding protein and a unique deformed B-DNA.


Assuntos
Proteínas de Ligação a DNA/química , DNA/química , Proteínas de Insetos/química , Fatores de Transcrição/química , Animais , Sítios de Ligação , Bombyx , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Insetos/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Sequências Repetitivas de Ácido Nucleico , Fatores de Transcrição/metabolismo
18.
Biochim Biophys Acta ; 1854(5): 437-48, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25698221

RESUMO

The soilborne fungus Verticillium dahliae is the major pathogen that causes the verticillium wilt disease of plants, which leads to huge economic loss worldwide. At the early stage of infection, growth of the pathogen is subject to the nutrition stress of limited nitrogen. To investigate the secreted pathogenic proteins that play indispensable roles during invasion at this stage, we compared the profiles of secreted proteins of V. dahliae under nitrogen starvation and normal conditions by using in-gel and in-solution digestion combined with liquid chromatography-nano-electrospray ionization tandem mass spectrometry (LC-nanoESI-MS). In total, we identified 212 proteins from the supernatant of liquid medium, including 109 putative secreted proteins. Comparative analysis indicated that the expression of 76 proteins was induced, whereas that of 9 proteins was suppressed under nitrogen starvation. Notably, 24 proteins are constitutively expressed. Further bioinformatic exploration enabled us to classify the stress-induced proteins into seven functional groups: cell wall degradation (10.5%), reactive oxygen species (ROS) scavenging and stress response (11.8%), lipid effectors (5.3%), protein metabolism (21.1%), carbohydrate metabolism (15.8%), electron-proton transport and energy metabolism (14.5%), and other (21.0%). In addition, most stress-suppressed proteins are involved in the cell-wall remodeling. Taken together, our analyses provide insights into the pathogenesis of V. dahliae and might give hints for the development of novel strategy against the verticillium wilt disease.


Assuntos
Proteínas Fúngicas/análise , Proteínas Fúngicas/metabolismo , Nitrogênio/deficiência , Verticillium/metabolismo , Sequência de Aminoácidos , Parede Celular/metabolismo , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Sequestradores de Radicais Livres/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , Nitrogênio/metabolismo , Doenças das Plantas/microbiologia , Proteoma/análise , Proteoma/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Verticillium/crescimento & desenvolvimento , Verticillium/patogenicidade
20.
Biochim Biophys Acta ; 1844(9): 1486-92, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24879127

RESUMO

Saccharomyces cerevisiae Gre2 (EC1.1.1.283) serves as a versatile enzyme that catalyzes the stereoselective reduction of a broad range of substrates including aliphatic and aromatic ketones, diketones, as well as aldehydes, using NADPH as the cofactor. Here we present the crystal structures of Gre2 from S. cerevisiae in an apo-form at 2.00Å and NADPH-complexed form at 2.40Å resolution. Gre2 forms a homodimer, each subunit of which contains an N-terminal Rossmann-fold domain and a variable C-terminal domain, which participates in substrate recognition. The induced fit upon binding to the cofactor NADPH makes the two domains shift toward each other, producing an interdomain cleft that better fits the substrate. Computational simulation combined with site-directed mutagenesis and enzymatic activity analysis enabled us to define a potential substrate-binding pocket that determines the stringent substrate stereoselectivity for catalysis.


Assuntos
Apoenzimas/química , Coenzimas/química , NADP/química , Oxirredutases/química , Subunidades Proteicas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Apoenzimas/genética , Apoenzimas/metabolismo , Coenzimas/metabolismo , Cristalografia por Raios X , Cinética , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , NADP/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Ligação Proteica , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA