RESUMO
The practical application of aqueous Zn metal batteries (AZMBs) is impeded by inferior reversibility and stability of Zn metal anode (ZMA) originated from side reactions and dendrite growth. Herein, anion receptor l-Proline (LP) is selected to simultaneously manipulate solvation chemistry and electric double layer (EDL) for constructing dendrite-free and stable AZMBs with an ultra-high depth of discharge (DOD of 100 %) and low negative/positive capacity ratio (N/P of 1.1). Experimental and computational results demonstrate that the strong interaction between -SO32- group from OTf- anion and LP promotes the coordination effect of cation and solvent, which improves the stability of electrolyte and induces fine and uniform Zn nucleus formation. Meanwhile, the preferential reduction of OTf- and adsorption of LP establish an anion-derived ZnF2-rich solid electrolyte interface by altering EDL structure, which enhances the mechanical stability and Zn2+ diffusion kinetics of the interface and prevents the contact of H2O molecules. Consequently, ZMA in LP/Zn(OTf)2 electrolyte delivers a satisfactory cycling lifespan under DOD of 100 % and an outstanding Coulombic efficiency of 99.93 % for 10,000 cycles at 10 mA cm-2. Moreover, Zn||Od-NH4V4O10 full cells with LP/Zn(OTf)2 electrolyte demonstrate excellent cycle stability at high cathode loading (20.412 mg), low N/P (1.1), and high temperature (50 °C).
RESUMO
The excessive emission of greenhouse gases, which leads to global warming and alarms the world, has triggered a global campaign for carbon neutrality. Carbon capture and sequestration (CCS) technology has aroused wide research interest as a versatile emission mitigation technology. Metal-organic frameworks (MOFs), as a new class of high-performance adsorbents, hold great potential for CO2 capture from large point sources and ambient air due to their ultra-high specific surface area as well as pore structure. In recent years, MOFs have made great progress in the field of CO2 capture and separation, and have published a number of important results, which have greatly promoted the development of MOF materials for practical carbon capture applications. This review summarizes the most recent advanced research on MOF materials for carbon capture in various application scenarios over the past six years. The strategies for enhancing CO2 selective adsorption and separation of MOFs are described in detail, along with the development of MOF-based composites. Moreover, this review also systematically summarizes the highly concerned issues of MOF materials in practical applications of carbon capture. Finally, future research on CO2 capture by MOF materials is prospected.
RESUMO
2D compounds exfoliated from weakly bonded bulk materials with van der Waals (vdW) interaction are easily accessible. However, the strong internal ionic/covalent bonding of most inorganic crystal frameworks greatly hinders 2D material exfoliation. Herein, we first proposed a radical/strain-synergistic strategy to exfoliate non-vdW interacting pseudo-layered phosphate framework. Specifically, hydroxyl radicals (â OH) distort the covalent bond irreversibly, meanwhile, H2O molecules as solvents, further accelerating interlayered ionic bond breakage but mechanical expansion. The innovative 2D laminar NASICON-type Na3V2(PO4)2O2F crystal, exfoliated by â OH/H2O synergistic strategy, exhibits enhanced sodium-ion storage capacity, high-rate performance (85.7â mAh g-1 at 20â C), cyclic life (2300 cycles), and ion migration rates, compared with the bulk framework. Importantly, this chemical/physical dual driving technique realized the effective exfoliation for strongly coupled pseudo-layered frameworks, which accelerates 2D functional material development.
RESUMO
The poor reversibility and stability of Zn metal anode (ZMA) caused by uncontrolled Zn deposition behaviors and serious side reactions severely impeded the practical application of aqueous Zn metal battery. Herein, a liquid-dynamic and self-adaptive protective layer (LSPL) was constructed on the ZMA surface for inhibiting dendrites and by-products formation. Interestingly, the outer LSPL consists of liquid perfluoropolyether (PFPE), which can dynamically adapt volume change during repeat cycling and inhibit side reactions. Moreover, it can also decrease the de-solvation energy barrier of Zn2+ by strong interaction between C-F bond and foreign Zn2+ , improving Zn2+ transport kinetics. For the LSPL inner region, in-situ formed ZnF2 through the spontaneous chemical reaction between metallic Zn and part PFPE can establish an unimpeded Zn2+ migration pathway for accelerating ion transfer, thereby restricting Zn dendrites formation. Consequently, the LSPL-modified ZMA enables reversible Zn deposition/dissolution up to 2000 h at 1 mA cm-2 and high coulombic efficiency of 99.8% at 4 mA cm-2 . Meanwhile, LSPL@Zn||NH4 V4 O10 full cells deliver an ultralong cycling lifespan of 100 00 cycles with 0.0056% per cycle decay rate at 10 A g-1 . This self-adaptive layer provides a new strategy to improve the interface stability for next-generation aqueous Zn battery.
RESUMO
Since pseudorabies (PR) re-emerged and rapidly spread in China at the end of 2011, researchers have focused on effective vaccine strategies to prevent and control pseudorabies virus (PRV) infection in pig herds. Due to the extensive application of an attenuated vaccine based on the Bartha-K61 strain isolated in Hungary in 1961 and the variation of the PRV strain, it has been suggested that traditional vaccines based on the Bartha-K61 strain offer only partial protection against variant strains. It was therefore evaluated whether the Porcilis® Begonia vaccine, which is based on the NIA-3 strain with deletions in the gE and TK genes, is efficacious against experimental infection with the virulent, contemporary Chinese PRV strain ZJ01. In this study, piglets were vaccinated with Porcilis® Begonia through either the intradermal (ID) route or the intramuscular (IM) route and subsequently challenged intranasally with strain ZJ01 at 4 weeks post-vaccination. An unvaccinated challenge group and an unvaccinated/nonchallenged group were also included in the study. All animals were monitored for 14 days after challenge. Vaccinated and negative control pigs stayed healthy during the study, while the unvaccinated control animals developed lesions associated with PRV ZJ01 challenge, and 44% of these pigs died before the end of the experiment. This study demonstrated that ID or IM vaccination of pigs with a vaccine based on the NIA-3 strain Porcilis® Begonia clinically protects against fatal PRV challenge with the ZJ01 strain.
Assuntos
Begoniaceae , Herpesvirus Suídeo 1 , Doenças dos Suínos , Vacinas Virais , Suínos , Animais , Herpesvirus Suídeo 1/genética , Vacinas contra Pseudorraiva , Anticorpos Antivirais , Vacinação/veterinária , Vacinas Virais/genéticaRESUMO
BACKGROUND: Despite the advancement of new screening strategies and the advances in pharmacological therapies, the cancerization rates of familial adenomatous polyposis (FAP) are stable and even increased in the last years. Therefore, it necessitates additional research to characterize and understand the underlying mechanisms of FAP. OBJECTIVE: To determine the genes that drive the pathogenesis of familial adenomatous polyposis (FAP). METHODS: We performed on a cohort (GSE111156) gene profile, which consist of four group of gene expressions (the gene expressions of cancer, adenoma and normal tissue of duodenal cancer from patients with FAP were defined as Case N, Case A and Case C respectively, while that of adenoma tissue from patients with FAP who did not have duodenal cancer was Ctrl A). Tracking Tumor Immunophenotype (TIP) website was applied to reveal immune infiltration profile and signature genes of FAP. We merged the genes of key module (pink and midnight module) with signature genes to obtained the biomarkers related with FAP pathogenesis. The expression of these five biomarkers in FAP intratumoral region (IT) and tumor rim (TR) was detected with Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). RESULTS: In total, 220, 23 and 63 DEGs were determined in Cases C, A and N, in comparison to Ctrl A. In total, 196 and 10 DEGs were determined in Cases C and A, separately, as compared to Case N. A total of four biomarkers including CCL5, CD3G, CD2 and TLR3 were finally identified associated with pink module, while only one biomarker (KLF2) associated with midnight module was identified. All biomarkers were evidently raised in FAP IT tissues utilizing qRT-PCR. CONCLUSION: We identified five potential biomarkers for pathogenesis of FAP to understand the fundamental mechanisms of FAP progression and revealed some probable targets for the diagnosis or treatment of FAP.
RESUMO
BACKGROUND: Colorectal cancer (CRC), the fourth of the world's major common malignancy, poses a serious threat to the physical and mental health of the population. Nevertheless, the prognosis of CRC patients remains unsatisfactory. Consequently, it is still imperative to continuously discover the CRC mechanisms. METHODS: The expression profiles of mRNAs were recognized by whole transcriptome sequencing to identity differentially expressed mRNA (DE-mRNA). TCGA COAD cohort, PPOGgene and Kaplan-Meier Plotter databases were utilized to validate RNF114 relevance to CRC prognosis. The effect of RNF114 on the malignant biological behavior of CRC was explored in CRC cells and subcutaneous tumor models and lung metastasis model after exogenous regulation of RNF114. RESULTS: A total of 1358 DE-mRNAs were identified, including 617 up-regulated and 741 down-regulated DE-mRNAs, and they were mainly involved in the term of receptor ligand activity, Wnt signaling pathway and pathway in cancer. Notably, RNF114 was hyper-expressed in tissues and cell of CRC, and significantly correlated with tumor invasion depth and TNM stage of CRC patients. RNF114 expression were significantly associated with overall survival, and had superior diagnostic value in CRC. In vitro, knockdown of RNF114 statistically diminished the proliferation, stemness, invasion and wound healing of CRC cells and facilitated their apoptosis, and the opposite result was observed for overexpression of RNF114. In vivo, knockdown of RNF114 effectively diminished the mass and volume of tumors, and lung metastasis in animal model. CONCLUSIONS: In summary, we identified DE-mRNAs in CRC, and elucidated that RNF114 facilitates CRC process. The discovery will contribute to theoretical foundation for RNF114 as a potential therapeutic target and biomarker, and offer new perspectives for CRC research.
Assuntos
Neoplasias Colorretais , Via de Sinalização Wnt , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , RNA MensageiroRESUMO
The dendrite growth and parasitic reactions that occur on Zn metal anode (ZMA)/electrolyte interface hinder the development of aqueous zinc ion batteries (AZIBs) in next-generation renewable energy storage systems. Fortunately, reconstructing the inner Helmholtz layer (IHL) by introducing an electrolyte additive, is viewed as one of the most promising strategies to harvest the stable ZMA. Herein, (4-chloro-3-nitrophenyl) (pyridin-4-yl) methanone (CNPM) with quadruple functional groups is introduced into the ZnSO4 electrolyte to reshape the interface between ZMA and electrolyte and change the solvation structure of Zn2+ . Density functional theory (DFT) calculations manifest that the âCâO, âCl, âCâNâ, and âNO2 functional groups of CNPM interact with metallic Zn simultaneously and adsorb on the ZMA surface in a parallel arrangement manner, thus forming a water-poor IHL and creating well-arranged ion transportation channels. Furthermore, theoretical calculations and experimental results demonstrate that CNPM absorbed on the Zn anode surface can serve as zincophilic sites for inducing uniform Zn deposition along the (002) plane. Benefiting from the synergistic effect of these functions, the dendrite growth and parasitic reactions are suppressed significantly. As a result, ZMA exhibits a long cycle life (2900 h) and high coulombic efficiency (CE) (500 cycles) in the ZnSO4 +CNPM electrolyte.
RESUMO
The most prevalent type of intestinal polyposis, colorectal adenomatous polyposis (CAP), is regarded as a precancerous lesion of colorectal cancer with obvious genetic characteristics. Early screening and intervention can significantly improve patients' survival and prognosis. The adenomatous polyposis coli (APC) mutation is believed to be the primary cause of CAP. There is, however, a subset of CAP with undetectable pathogenic mutations in APC, known as APC (-)/CAP. The genetic predisposition to APC (-)/CAP has largely been associated with germline mutations in some susceptible genes, including the human mutY homologue (MUTYH) gene and the Nth-like DNA glycosylase 1 (NTHL1) gene, and DNA mismatch repair (MMR) can cause autosomal recessive APC (-)/CAP. Furthermore, autosomal dominant APC (-)/CAP could occur as a result of DNA polymerase epsilon (POLE)/DNA polymerase delta 1 (POLD1), axis inhibition protein 2 (AXIN2), and dual oxidase 2 (DUOX2) mutations. The clinical phenotypes of these pathogenic mutations vary greatly depending on their genetic characteristics. Therefore, in this study, we present a comprehensive review of the association between autosomal recessive and dominant APC (-)/CAP genotypes and clinical phenotypes and conclude that APC (-)/CAP is a disease caused by multiple genes with different phenotypes and interaction exists in the pathogenic genes.
Assuntos
Polipose Adenomatosa do Colo , Humanos , Polipose Adenomatosa do Colo/diagnóstico , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/patologia , Mutação , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Mutação em Linhagem Germinativa , Fenótipo , Genes APCRESUMO
Sodium-ion batteries (SIBs) have great potential for large-scale energy storage. Cellulose is an attractive material for sustainable separators, but some key issues still exist affecting its application. Herein, a cellulose-based composite separator (CP@PPC) was prepared by immersion curing of cellulose-based separators (CP) with poly(propylene carbonate) (PPC). With the assistance of PPC, the CP@PPC separator is able to operate the cell stably at high voltages (up to 4.95â V). The "pore-hopping" ion transport mechanism in CP@PPC opens up extra Na+ migration paths, resulting in a high Na+ transference number (0.613). The separator can also tolerate folding, bending and extreme temperature under certain circumstances. Full cells with CP@PPC reveal one-up capacity retention (96.97 %) at 2C after 500 cycles compared to cells with CP. The mechanism highlights the merits of electrolyte analogs in separator modification, making a rational design for durable devices in advanced energy storage systems.
RESUMO
OBJECTIVE: To compare neoadjuvant chemotherapy (nCT) with CAPOX alone versus neoadjuvant chemoradiotherapy (nCRT) with capecitabine in locally advanced rectal cancer (LARC) with uninvolved mesorectal fascia (MRF). BACKGROUND DATA: nCRT is associated with higher surgical complications, worse long-term functional outcomes, and questionable survival benefits. Comparatively, nCT alone seems a promising alternative treatment in lower-risk LARC patients with uninvolved MRF. METHODS: Patients between June 2014 and October 2020 with LARC within 12 cm from the anal verge and uninvolved MRF were randomly assigned to nCT group with 4 cycles of CAPOX (Oxaliplatin 130 mg/m2 IV day 1 and Capecitabine 1000 mg/m2 twice daily for 14 d. Repeat every 3 wk) or nCRT group with Capecitabine 825 mg/m² twice daily administered orally and concurrently with radiation therapy (50 Gy/25 fractions) for 5 days per week. The primary end point is local-regional recurrence-free survival. Here we reported the results of secondary end points: histopathologic response, surgical events, and toxicity. RESULTS: Of the 663 initially enrolled patients, 589 received the allocated treatment (nCT, n=300; nCRT, n=289). Pathologic complete response rate was 11.0% (95% CI, 7.8-15.3%) in the nCT arm and 13.8% (95% CI, 10.1-18.5%) in the nCRT arm ( P =0.33). The downstaging (ypStage 0 to 1) rate was 40.8% (95% CI, 35.1-46.7%) in the nCT arm and 45.6% (95% CI, 39.7-51.7%) in the nCRT arm ( P =0.27). nCT was associated with lower perioperative distant metastases rate (0.7% vs. 3.1%, P =0.03) and preventive ileostomy rate (52.2% vs. 63.6%, P =0.008) compared with nCRT. Four patients in the nCT arm received salvage nCRT because of local disease progression after nCT. Two patients in the nCT arm and 5 in the nCRT arm achieved complete clinical response and were treated with a nonsurgical approach. Similar results were observed in subgroup analysis. CONCLUSIONS: nCT achieved similar pCR and downstaging rates with lower incidence of perioperative distant metastasis and preventive ileostomy compared with nCRT. CAPOX could be an effective alternative to neoadjuvant therapy in LARC with uninvolved MRF. Long-term follow-up is needed to confirm these results.
Assuntos
Terapia Neoadjuvante , Neoplasias Retais , Humanos , Terapia Neoadjuvante/métodos , Resultado do Tratamento , Capecitabina/uso terapêutico , Neoplasias Retais/patologia , Quimiorradioterapia/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Estadiamento de NeoplasiasRESUMO
A lithium metal anode (LMA) is appealing due to its high theoretical capacity and low electrochemical potential. Unfortunately, the practical application of LMAs is restricted by the uncontrollable Li dendrite growth and tremendous volume change. Herein, lithiophilic honeycomb-like layered double hydroxide (LDH) nanosheet arrays supported on a flexible carbon cloth (NiMn-LDHs NAs@CC) are synthesized as the Li host to spatially confine the Li deposition, guiding Li growth via a conformal and uniform manner. First, the lithiophilic NiMn-LDHs NAs as nucleation seeds render the CC substance outstanding lithiophilicity and reduce the nucleation barrier. The hierarchical honeycomb-like structure then directs the oriented Li deposition and provides an open channel for fast ion transport. Finally, the CC skeleton offers a high specific surface for decreasing the inhomogeneous distribution of the current density and enough space for alleviating the volume variations, synergistically inhibiting the dendritic Li growth. As a consequence, the NiMn-LDHs NAs@CC symmetric cell exhibits a low overpotential of less than 17 mV at 2 mA cm-2 and a long lifespan of 2100 h at 3 mA cm-2. In addition, when paired with the LiNiCoMnO2 (NCM111) cathode, the NiMn-LDHs NAs@CC@Li full cell presents enhanced cycling stability and rate capability in comparison to the CC@Li full cell, implying the great potential of the NiMn-LDHs NAs@CC in stabilizing the LMA.
RESUMO
Limited by the notorious Li dendrites growth and serious polysulfide shuttle effect, the development of lithium-sulfur (Li-S) batteries is stagnant. Herein, a multifunctional separator composed of Cu-based metal-organic framework (Cu-MOF) and Li-Nafion was proposed to address the above intractable issues. The Cu-MOF with homogeneous porous structure and abundant Lewis acidic sites not only promotes uniform Li+ flux, but also exhibits a strong chemical interaction with polysulfides to inhibit the shuttle effect. Moreover, the narrow pore size distribution in the Cu-MOF and negatively charged gap endowed by the -SO3- groups both act as ion sieve to facilitate the passage of Li+ and restrict the migration of polysulfide anions, synergistically mitigating the dendritic Li growth and polysulfides shuttling. As a result, the symmetric cell with MOF/Nafion separator achieves ultralong cycling stability (1000 h) and ultralow overpotential of 20 mV at a current density of 1.0 mA cm-2. Importantly, in the assembled Li-S full battery, the modified PP separator presents the superior cycle stability with capacity retention of 90% after 300 cycles at 0.5 C. Current outcomes open up a new route to design functional separators with ion permselective for realizing the dendrite-free and high-performance Li-S battery.
RESUMO
End-stage ankle osteoarthritis with large cysts of talar dome can be challenging to treat. Twenty patients diagnosed as end-stage ankle arthritis with large talar cysts between 04/2010 and 02/2016 were randomly divided into experimental group (10 cases) and conventional group (10 cases) by random number method. Patients in the experimental group were treated with ankle arthrodesis combined with a concomitant procedure of mosaic bone autograft transplantation, the conventional group under the ankle arthrodesis. The operation time, intraoperative blood loss, postoperative hospital stay, the time of bone union, and postoperative height of the talus between the 2 groups were compared. The preoperative and postoperative American Orthopaedic Foot and Ankle Society ankle-hindfoot scale score were also recorded and compared. There was no significant difference in the operation time, intraoperative blood loss, and postoperative hospital stay between the 2 groups. The postoperative height of the talus body and the time of bone union were better in the experimental group than that in the conventional group (p < .05). The results of follow-up showed that the American Orthopaedic Foot and Ankle Society scores of the conventional group were lower than those in the experimental group (p < .001). And the incidence of complication (10%) in the experimental group was significantly lower than that in the conventional group (40%). The use of tibiotalar arthrodesis combined with mosaic bone autograft transfer may be potentially an effective option for the treatment of end-stage ankle arthritis with large talar cysts.
Assuntos
Cistos , Osteoartrite , Tornozelo , Articulação do Tornozelo/diagnóstico por imagem , Articulação do Tornozelo/cirurgia , Artrodese/métodos , Autoenxertos , Transplante Ósseo , Humanos , Osteoartrite/diagnóstico por imagem , Osteoartrite/cirurgia , Estudos Retrospectivos , Resultado do TratamentoRESUMO
Lithium (Li) metal has been considered to be the most promising anode material for next-generation rechargeable batteries. Unfortunately, the hazards induced by dendrite growth and volume fluctuation hinder its commercialized application. Here, a three-dimensional (3D) current collector composed of a vertically aligned Cu2O nanowire that is tightly coated with a polydopamine protective layer is developed to solve the encountered issues of lithium metal batteries (LMBs). The Cu2O nanowire arrays (Cu2O NWAs) provide abundant lithiophilic sites for inducing Li nucleation selectively to form a thin Li layer around the nanowires and direct subsequent Li deposition. The well-defined nanochannel works well in confining the Li growth spatially and buffering the volume change during the repeated cycling. The PDA coatings adhered onto the outline of the Cu2O NWAs serve as the artificial solid electrolyte interface to isolate the electrode and electrolyte and retain the interfacial stability. Moreover, the increased specific area of copper foam (CF) can dissipate the local current density and further suppress the growth of Li dendrites. As a result, CF@Cu2O NWAs@PDA realizes a dendrite-free morphology and the assembled symmetrical batteries can work stably for over 1000 h at 3 mA cm-2. When CF@Cu2O NWAs@PDA is coupled with a LiFePO4 cathode, the full cells exhibit improved cycle stability and rate performance.
RESUMO
Under solvothermal conditions, 10 molecular-ionic platinum compounds [Pt(NIA)2]·(L)·nH2O (L = dicarboxylate) were synthesized. In the reaction, acetonitrile undergoes trimerization in situ to generate N-(1-iminoethyl)acetamidine (NIA), which coordinates to PtII ions in forming the N-(1-iminoethyl)acetamidine platinum cation, while the organic carboxylates act as anions. Structural analysis shows that carboxylate ligands regulate the mode of packing of [Pt(NIA)2] in those compounds. Photoluminescence studies show that the photoluminescence behaviors of those compounds also depended on the carboxylate ligands. 1-4, 6, and 7 show blue light emission with fluorescence emission wavelengths of 437-440 nm despite the different carboxylate ligands used. 5 and 8 show green emissions with maximum intensity peak positions of 522 nm. Compared with that of 5 and 8, the emission of 9 and 10 has the same red shifts with peak positions of 567 and 528 nm. The variable-temperature photoluminescence studies reveal that 8 and 10 show two different thermal quenching (TQ) zones in the range of 80-420 K, while the emission intensity of 9 shows negative thermal quenching at low temperatures of 80-220 K and TQ in the range of 220-420 K.
RESUMO
Objective: To analyze the factors influencing the distribution of 131-I in the liver of patients with advanced hepatic carcinoma treated with the combination of Licartin (131I Metuximab) and transcatheter arterial chemoembolization (TACE). This study provides a reference and basis for the clinic on how to choose the best time for the treatment of Licartin and how to reduce other possible factors affecting the role of Licartin. Methods: Data from 41 patients with advanced hepatic carcinoma treated with the combination of Licartin and TACE in the Interventional Department of our hospital from March 2014 to December 2020 were collected. This included general characteristics, history of open and interventional surgery, interval between the last interventional surgery and the Licartin treatment, selected arteries in the Licartin perfusion, and 131-I distribution in the liver. Regression analysis was conducted to investigate the factors affecting the distribution of 131I in the liver. Results: In 14 cases (34.1%), 131-I was evenly distributed in the liver, and there was no correlation between the cause of even distribution with age(OR=0.961, P = 0.939), previous open surgery history(OR=3.547,P= 0.128), previous history of interventional therapy(OR=0.140,P = 0.072), the interval between the last interventional surgery and the Licartin treatment(OR=0.858,P = 0.883), or the choice of the perfusion artery in the Licartin treatment (OR=1.489,P = 0.419). In 14 cases (34.1%), there was higher aggregation in the tumor than in the normal liver, which was related to previous interventional surgery (OR=7.443,P = 0.043). In 13 cases (31.7%), there was lower aggregation in the tumor than in the normal liver, which was related to the selected vessels in the Licartin perfusion (OR=0.23,P = 0.013). Conclusion: The effective aggregation of 131-I in the liver, even in tumors, the previous history of TACE, and the choice of vessels in the Licartin infusion might be the factors influencing the distribution of 131-I in the liver during hepatic artery infusion of Licartin in combination with TACE therapy.
RESUMO
Although ether-based electrolytes have been extensively applied in anode evaluation of batteries, anodic instability arising from solvent oxidability is always a tremendous obstacle to matching with high-voltage cathodes. Herein, by rational design for solvation configuration, the fully coordinated ether-based electrolyte with strong resistance against oxidation is reported, which remains anodically stable with high-voltage Na3 V2 (PO4 )2 O2 F (NVPF) cathode under 4.5â V (versus Na+ /Na) protected by an effective interphase. The assembled graphite//NVPF full cells display superior rate performance and unprecedented cycling stability. Beyond that, the constructed full cells coupling the high-voltage NVPF cathode with hard carbon anode exhibit outstanding electrochemical performances in terms of high average output voltage up to 3.72â V, long-term cycle life (such as 95 % capacity retention after 700 cycles) and high energy density (247â Wh kg-1 ). In short, the optimized ether-based electrolyte enriches systematic options, the ability to maintain oxidative stability and compatibility with various anodes, exhibiting attractive prospects for application.
RESUMO
In this study, we aimed to uncover genes that drive the pathogenesis of liver metastasis in colorectal cancer (CRC), and identify effective genes that could serve as potential therapeutic targets for treating with colorectal liver metastasis patients based on two GEO datasets. Several bioinformatics approaches were implemented. First, differential expression analysis screened out key differentially expressed genes (DEGs) across the two GEO datasets. Based on gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, we identified the enrichment functions and pathways of the DEGs that were associated with liver metastasis in CRC. Second, immune infiltration analysis identified key immune signature gene sets associated with CRC liver metastasis, among which two key immune gene families (CD and CCL) identified as key DEGs were filtered by protein-protein interaction (PPI) network. Some of the members in these gene families were associated with disease free survival (DFS) or overall survival (OS) in two subtypes of CRC, namely COAD and READ. Finally, functional enrichment analysis of the two gene families and their neighboring genes revealed that they were closely associated with cytokine, leukocyte proliferation and chemotaxis. These results are valuable in comprehending the pathogenesis of liver metastasis in CRC, and are of seminal importance in understanding the role of immune tumor infiltration in CRC. Our study also identified potentially effective therapeutic targets for liver metastasis in CRC including CCL20, CCL24 and CD70.