Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 929
Filtrar
1.
Microbiome ; 12(1): 123, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971798

RESUMO

BACKGROUND: The Atribacterota are widely distributed in the subsurface biosphere. Recently, the first Atribacterota isolate was described and the number of Atribacterota genome sequences retrieved from environmental samples has increased significantly; however, their diversity, physiology, ecology, and evolution remain poorly understood. RESULTS: We report the isolation of the second member of Atribacterota, Thermatribacter velox gen. nov., sp. nov., within a new family Thermatribacteraceae fam. nov., and the short-term laboratory cultivation of a member of the JS1 lineage, Phoenicimicrobium oleiphilum HX-OS.bin.34TS, both from a terrestrial oil reservoir. Physiological and metatranscriptomics analyses showed that Thermatribacter velox B11T and Phoenicimicrobium oleiphilum HX-OS.bin.34TS ferment sugars and n-alkanes, respectively, producing H2, CO2, and acetate as common products. Comparative genomics showed that all members of the Atribacterota lack a complete Wood-Ljungdahl Pathway (WLP), but that the Reductive Glycine Pathway (RGP) is widespread, indicating that the RGP, rather than WLP, is a central hub in Atribacterota metabolism. Ancestral character state reconstructions and phylogenetic analyses showed that key genes encoding the RGP (fdhA, fhs, folD, glyA, gcvT, gcvPAB, pdhD) and other central functions were gained independently in the two classes, Atribacteria (OP9) and Phoenicimicrobiia (JS1), after which they were inherited vertically; these genes included fumarate-adding enzymes (faeA; Phoenicimicrobiia only), the CODH/ACS complex (acsABCDE), and diverse hydrogenases (NiFe group 3b, 4b and FeFe group A3, C). Finally, we present genome-resolved community metabolic models showing the central roles of Atribacteria (OP9) and Phoenicimicrobiia (JS1) in acetate- and hydrocarbon-rich environments. CONCLUSION: Our findings expand the knowledge of the diversity, physiology, ecology, and evolution of the phylum Atribacterota. This study is a starting point for promoting more incisive studies of their syntrophic biology and may guide the rational design of strategies to cultivate them in the laboratory. Video Abstract.


Assuntos
Carbono , Campos de Petróleo e Gás , Filogenia , Carbono/metabolismo , Campos de Petróleo e Gás/microbiologia , RNA Ribossômico 16S/genética , Genoma Bacteriano , Alcanos/metabolismo
2.
Commun Biol ; 7(1): 784, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951577

RESUMO

Spotted fever group rickettsiae (SFGR) are obligate intracellular bacteria that cause spotted fever. The limitations of gene manipulation pose great challenges to studying the infection mechanisms of Rickettsia. By combining bioorthogonal metabolism and click chemistry, we developed a method to label R. heilongjiangensis via azide moieties and achieved rapid pathogen localization without complex procedures. Moreover, we constructed a C57BL/6 mice infection model by simulating tick bites and discovered that the stomach is the target organ of R. heilongjiangensis infection through in vivo imaging systems, which explained the occurrence of gastrointestinal symptoms following R. heilongjiangensis infection in some cases. This study offers a unique perspective for subsequent investigations into the pathogenic mechanisms of SFGR and identifies a potential target organ for R. heilongjiangensis.


Assuntos
Química Click , Camundongos Endogâmicos C57BL , Rickettsia , Animais , Rickettsia/genética , Rickettsia/fisiologia , Camundongos , Química Click/métodos , Estômago/microbiologia , Modelos Animais de Doenças , Rickettsiose do Grupo da Febre Maculosa/microbiologia , Feminino , Infecções por Rickettsia/microbiologia , Azidas/química
3.
Antonie Van Leeuwenhoek ; 117(1): 101, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008162

RESUMO

Two novel Gram-stain-negative, aerobic, and non-motile strains, designated FZY0004T and YYF002T, were isolated from an agar-degrading co-culture, which was obtained from seawater of the intertidal zone of Yancheng City, the Yellow Sea of China. Strain FZY0004T optimally grew at 28 °C, pH 7.0, and 2-6% NaCl, while strain YYF002T optimally grew at 28 °C, pH 7.5, and 2-4% NaCl. Strain FZY0004T possessed Q-9 as the major respiratory quinone, and its major fatty acids (> 10%) were summed feature 8 (C18:1 ω7c), C16:0, and summed feature 3 (C16:1 ω7c/C16:1 ω6c). The polar lipids identified in strain FZY0004T were phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and several unidentified phospholipids (PL) and lipids (L). On the other hand, strain YYF002T had MK-6 as the predominant respiratory quinone and its major fatty acids consisted of iso-C15:0, iso-C15:1 G, and iso-C15:0 3-OH. The polar lipids identified in strain YYF002T were aminolipid (AL), PE, and several unidentified lipids. Strain FZY0004T shared 99.5% 16S rRNA gene sequence similarity and 90.1% average nucleotide identity (ANI) with T. povalilytica Zumi 95T, and strain YYF002T shared 99.2% 16S rRNA gene sequence similarity and 88.2% ANI with W. poriferorum JCM 12885T. The genomic DNA G + C contents of strains FZY0004T and YYF002T were 54.5% and 33.5%, respectively. The phylogenetic, phenotypic, and physiological characteristics permitted the distinction of the two strains from their neighbors, and we thus propose the names Thalassospira aquimaris sp. nov. (type strain FZY0004T = JCM 35895T = MCCC 1K08380T) and Winogradskyella marincola sp. nov. (type strain YYF002T = JCM 35950T = MCCC 1K08382T).


Assuntos
Ágar , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Água do Mar , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , DNA Bacteriano/genética , Ágar/metabolismo , Ácidos Graxos/metabolismo , Composição de Bases , Técnicas de Tipagem Bacteriana , China , Fosfolipídeos/metabolismo , Técnicas de Cocultura , Análise de Sequência de DNA
5.
Antonie Van Leeuwenhoek ; 117(1): 98, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981868

RESUMO

An aerobic, Gram-stain-negative bacterium, designated as SYSU D00382T, was sourced from soil of Gurbantunggut Desert, PR China. The strain was short-rod-shaped, oxidase-positive and catalase-negative, with yellow-colored, convex, round, and smooth colonies on TSA plate. Growth and proliferation occurred at 4-37 °C (optimal: 28-30 °C), pH 5.0-8.0 (optimal: pH 6.0-7.0) and NaCl concentration of 0-2.5% (optimal: 0-0.5%). The 16S rRNA gene based phylogenetic assessment showed that SYSU D00382T belonged to the genus Pedobacter, and was most closely related to Pedobacter ginsengisoli Gsoil 104T with similarity of 97.7%. The genomic DNA G+C content of SYSU D00382T was 46.4%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between SYSU D00382T and P. ginsengisoli Gsoil 104T were 75.7% and 17.5%, respectively. The main polar lipid was phosphatidylethanolamine. The major fatty acids (> 5%) were iso-C15:0, iso-C17:0 3-OH, summed features 3 and 9. The sole respiratory quinone identified was MK-7. The phylogeny based on 16S rRNA gene and whole-genome sequences revealed that SYSU D00382T formed a robust lineage with P. ginsengisoli Gsoil 104T. Based on phenotypic, phylogenetic and genotypic data, a novel specie named Pedobacter deserti sp. nov. is proposed. The type strain is SYSU D00382T (= CGMCC 1.18627T = MCCC 1K04972T = KCTC 82279T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Clima Desértico , Ácidos Graxos , Pedobacter , Filogenia , RNA Ribossômico 16S , Microbiologia do Solo , Pedobacter/genética , Pedobacter/classificação , Pedobacter/isolamento & purificação , Pedobacter/fisiologia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , China , Hibridização de Ácido Nucleico , Análise de Sequência de DNA
6.
PhytoKeys ; 243: 105-112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947550

RESUMO

Lappulaeffusa D.H.Liu & W.J.Li, a new species of Boraginaceae from Xinjiang, China, is described and illustrated in this study. The new species is morphologically similar to Lappulahimalayensis and L.tadshikorum. However, it can be distinguished from the compared species by several characteristics, such as: stem single, erect, frequently branched at middle and above, densely spreading hispid, hairs discoid at base; corolla white or blue; fruit compressed, heteromorphic nutlets with two rows of marginal glochids, nutlets acute ovoid, disc narrowly ovate-triangular. The diagnosis of the new species is supported with comprehensive investigation including photographs, detailed description, notes on etymology, distribution and habitat, conservation status, as well as comparisons with morphologically similar species.

7.
Artigo em Inglês | MEDLINE | ID: mdl-39037442

RESUMO

Two Gram-stain-negative, aerobic, milk-white coloured, non-motile, short rod-shaped bacteria, designated as strains SYSU D60010T and SYSU D60012T, were isolated from sand samples collected from the Taklimakan Desert of Xinjiang Province in China. Both strains were positive for oxidase, catalase and nitrate reduction, but negative for amylase, H2S production, hydrolysis of gelatin and cellulase. Strains SYSU D60010T and SYSU D60012T grew well at 28 °C, at pH 7 and had the same NaCl tolerance range of 0-1 % (w/v). The major fatty acids (>5 %) of strains SYSU D60010T and SYSU D60012T were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), iso-C19 : 0 cyclo ω8c, C16 : 0 and iso-C18 : 1 2-OH. Q-10 was the only respiratory ubiquinone. Strains SYSU D60010T and SYSU D60012T showed high 16S rRNA gene sequence similarities to Aestuariivirga litoralis SYSU M10001T (94.2 and 94.1 %), Rhodoligotrophos jinshengii BUT-3T (92.0 and 91.9 %) and Rhodoligotrophos appendicifer 120-1T (91.8 and 91.7 %), and the genomes were 7.4 and 5.8 Mbp in size with DNA G+C contents of 62.8 and 63.0 mol%, respectively. Phylogenetic, phenotypic and chemotaxonomic characteristics indicated that these two strains represent a novel genus and two novel species within the family Aestuariivirgaceae. We propose the name Taklimakanibacter deserti gen. nov., sp. nov. for strain SYSU D60010T, representing the type strain of this species (=KCTC 52783T =NBRC 113344T) and Taklimakanibacter lacteus gen. nov., sp. nov. for strain SYSU D60012T, representing the type strain of this species (=KCTC 52785T=NBRC 113128T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Clima Desértico , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Microbiologia do Solo , RNA Ribossômico 16S/genética , Ácidos Graxos/química , DNA Bacteriano/genética , China , Ubiquinona/análogos & derivados , Areia/microbiologia
8.
J Hazard Mater ; 476: 135017, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936185

RESUMO

Biodegradation stands as an eco-friendly and effective approach for organic contaminant remediation. However, research on microorganisms degrading sodium benzoate contaminants in extreme environments remains limited. In this study, we report to display the isolation of a novel hot spring enriched cultures with sodium benzoate (400 mg/L) as the sole carbon source. The results revealed that the phylum Pseudomonadota was the potential sodium benzoate degrader and a novel genus within the family Geminicoccaceae of this phylum. The isolated strain was named Benzoatithermus flavus SYSU G07066T and was isolated from HNT-2 hot spring samples. Genomic analysis revealed that SYSU G07066T carried benABC genes and physiological experiments indicated the ability to utilize sodium benzoate as a sole carbon source for growth, which was further confirmed by transcriptomic data with expression of benABC. Phylogenetic analysis suggested that Horizontal Gene Transfer (HGT) plays a significant role in acquiring sodium benzoate degradation capability among prokaryotes, and SYSU G07066T might have acquired benABC genes through HGT from the family Acetobacteraceae. The discovery of the first microorganism with sodium benzoate degradation function from a hot spring enhances our understanding of the diverse functions within the family Geminicoccaceae. This study unearths the first novel genus capable of efficiently degrading sodium benzoate and its evolution history at high temperatures, holding promising industrial applications, and provides a new perspective for further exploring the application potential of hot spring "microbial dark matter".

9.
AIMS Microbiol ; 10(2): 449-467, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38919721

RESUMO

In this study, we used 16S rRNA gene sequence analysis to describe the diversity of cultivable endophytic bacteria associated with fennel (Foeniculum vulgare Mill.) and determined their plant-beneficial traits. The bacterial isolates from the roots of fennel belonged to four phyla: Firmicutes (BRN1 and BRN3), Proteobacteria (BRN5, BRN6, and BRN7), Gammaproteobacteria (BRN2), and Actinobacteria (BRN4). The bacterial isolates from the shoot of fennel represented the phyla Proteobacteria (BSN1, BSN2, BSN3, BSN5, BSN6, BSN7, and BSN8), Firmicutes (BSN4, BRN1, and BRN3), and Actinobacteria (BRN4). The bacterial species Bacillus megaterium, Bacillus aryabhattai, and Brevibacterium frigoritolerans were found both in the roots and shoots of fennel. The bacterial isolates were found to produce siderophores, HCN, and indole-3-acetic acid (IAA), as well as hydrolytic enzymes such as chitinase, protease, glucanase, and lipase. Seven bacterial isolates showed antagonistic activity against Fusarium culmorum, Fusarium solani, and Rhizoctonia. solani. Our findings show that medicinal plants with antibacterial activity may serve as a source for the selection of microorganisms that exhibit antagonistic activity against plant fungal infections and may be considered as a viable option for the management of fungal diseases. They can also serve as an active part of biopreparation, improving plant growth.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38896475

RESUMO

Two Gram-stain-positive, aerobic, oxidase- and catalase-negative, non-motile, and short rod-shaped actinomycetes, named SYSU T00b441T and SYSU T00b490, were isolated from tidal flat sediment located in Guangdong province, PR China. The 16S rRNA gene sequence similarity, average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between SYSU T00b441T and SYSU T00b490 were 99.3, 99.5 and 97.1 %, respectively. Strains SYSU T00b441T and SYSU T00b490 exhibited the highest 16S rRNA gene sequence similarities to Actinotalea ferrariae CF 5-4T (97.1 %/98.2 %), with ANI values of 74.01/73.88 % and dDDH values of 20.5/20.4 %. In the phylogenomic tree, the two isolates were affiliated with the genus Actinotalea. The genomes of strains SYSU T00b441T and SYSU T00b490 were 3.31 and 3.34 Mb, and both had DNA G+C contents of 72.8 mol%, coding 3077 and 3085 CDSs, three and three rRNA genes, and 53 and 51 tRNAs, respectively. Growth occurred at 15-40 °C (optimum, 28-30 °C), pH 4.0-10.0 (optimum, 7.0) and in the presence of 0-7 % (w/v) NaCl (optimum, 3 %). The major fatty acids (>10  %) of strains SYSU T00b441T and SYSU T00b490 were anteiso-C15 : 0 and C16 : 0. The major respiratory quinone was identified as MK-10(H4). The polar lipids of strains SYSU T00b441T and SYSU T00b490 were diphosphatidyl glycerol, phosphatidylglycerol, phosphoglycolipid, phosphatidyl ethanolamine, two phosphatidylinositol mannosides, two glycolipids and two phospholipids. Based on these data, the two strains (SYSU T00b441T and SYSU T00b490) represent a novel species of the genus Actinotalea, for which the name Actinotalea lenta sp. nov is proposed. The type strain is SYSU T00b441T (=GDMCC 1.3827T=KCTC 49943T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Sedimentos Geológicos , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Sedimentos Geológicos/microbiologia , DNA Bacteriano/genética , China , Actinobacteria/isolamento & purificação , Actinobacteria/genética , Actinobacteria/classificação , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , Fosfolipídeos/química
11.
Imeta ; 3(2): e182, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38882487

RESUMO

The Microbiome Protocols eBook (MPB) serves as a crucial bridge, filling gaps in microbiome protocols for both wet experiments and data analysis. The first edition, launched in 2020, featured 152 meticulously curated protocols, garnering widespread acclaim. We now extend a sincere invitation to researchers to participate in the upcoming 2nd version of MPB, contributing their valuable protocols to advance microbiome research.

13.
J Hazard Mater ; 474: 134728, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38805824

RESUMO

Microplastics are accumulating rapidly in aquatic ecosystems, providing habitats for pathogens and vectors for antibiotic resistance genes (ARGs), potentially increasing pathogenic risks. However, few studies have considered microplastics as particulate organic matter (POM) to elucidate their pathogenic risks and underlying mechanisms. Here, we performed microcosm experiments with microplastics and natural POM (leaves, algae, soil), thoroughly investigating their distinct effects on the community compositions, functional profiles, opportunistic pathogens, and ARGs in Particle-Associated (PA) and Free-Living (FL) bacterial communities. We found that both microplastics and leaves have comparable impacts on microbial community structures and functions, enriching opportunistic pathogens and ARGs, which may pose potential environmental risks. These effects are likely driven by their influences on water properties, including dissolved organic carbon, nitrate, DO, and pH. However, microplastics uniquely promoted pathogens as keystone species and further amplified their capacity as hosts for ARGs, potentially posing a higher pathogenic risk than natural POM. Our research also emphasized the importance of considering both PA and FL bacteria when assessing microplastic impacts, as they exhibited different responses. Overall, our study elucidates the role and underlying mechanism of microplastics as an emerging POM in intensifying pathogenic risks of aquatic ecosystems in comparison with conventional natural POM.


Assuntos
Bactérias , Ecossistema , Microplásticos , Material Particulado , Poluentes Químicos da Água , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Material Particulado/toxicidade , Bactérias/genética , Bactérias/efeitos dos fármacos , Folhas de Planta/microbiologia , Microbiota/efeitos dos fármacos , Microbiologia da Água
14.
Anaerobe ; 88: 102866, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38797261

RESUMO

OBJECTIVE: The family Paenibacillaceae is linked to the order Caryophanales. Paenibacillaceae members residing in compost or soil play crucial roles in nutrient recycling and breaking down complex organic materials. However, our understanding of Paenibacillaceae remains limited. METHODS: Strain SYSU GA230002T was conclusively identified using a polyphasic taxonomic approach frequently utilized in bacterial systematics. Standard microbiological techniques were employed to characterize the morphology and biochemistry of strain SYSU GA230002T. RESULTS: An anaerobic and gram--negative bacterium, designated SYSU GA230002T, was isolated from geothermally heated soil of Tengchong, Yunnan Province, south-west China. Phylogenetic analyses based on 16S rRNA gene sequences and genomes showed that strain SYSU GA230002T belongs to the family Paenibacillaceae. 16S rRNA gene sequence similarity (<94.0 %), ANI (<71.95 %) and AAI values (<58.67 %) between strain SYSU GA230002T with other members of the family were lower than the threshold values recommended for distinguishing novel species. Growth was observed at 30-45 °C (optimum, 37 °C), pH 7.0-8.0 (optimum, pH 7.5) and in 0-3.0 % (w/v) NaCl concentrations (optimum, 0 %). The major fatty acids detected were anteiso-C15:0, iso-C16:0 and iso-C17:0. The polar lipids included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, one unidentified phospholipid, one unidentified aminolipid and two unidentified glycolipids. The respiratory quinone was MK-7. The DNA G + C content of strain SYSU GA230002T was 49.87 %. CONCLUSION: Based on the results of morphological, physiological properties, and chemotaxonomic characteristics, this strain is proposed to represent a new species of a new genus Ferviditalea candida gen. nov., sp. nov. The type strain of the type species is SYSU GA230002T (=KCTC 25726T = GDMCC 1.4160T).

15.
Artigo em Inglês | MEDLINE | ID: mdl-38752993

RESUMO

Two novel bacterial strains, designated as SYSU D00823T and SYSU D00873T, were isolated from sandy soil of the Gurbantunggut Desert in Xinjiang, north-west China. SYSU D00823T and SYSU D00873T shared 99.0 % 16S rRNA gene sequence identity, and were both most closely related to Pedobacter xinjiangensis 12157T with 96.1 % and 96.0 % similarities, respectively. Phylogenetic and phylogenomic analyses revealed that the two isolates and P. xinjiangensis 12157T formed a separate distinct cluster in a stable subclade with the nearby species Pedobacter mongoliensis 1-32T, as well as the genera Pararcticibacter and Arcticibacter. Furthermore, P. mongoliensis 1-32T formed a separate deep-branching lineage and did not form a cluster with members of the genus Pedobacter. The average nucleotide identity and digital DNA-DNA hybridization values between SYSU D00823T and SYSU D00873T and related species were well below the thresholds for species delineation (<81.0 % and <24.0 %, respectively). The genomes of SYSU D00823T and SYSU D00873T were 6.19 and 6.43 Mbp in size with 40.4 % and 40.5 % DNA G+C contents, respectively. The predominant fatty acids (>10 %) of SYSU D00823T and SYSU D00873T were iso-C15 : 0, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c). Menaquinone-7 was the only respiratory quinone. The major polar lipids were phosphatidylethanolamine, glycosphingolipid, aminoglycolipid/glycolipid, aminophospholipid and three or four unidentified polar lipids. These data indicated that strains SYSU D00823T and SYSU D00873T should be assigned to two novel species of a new genus within the family Sphingobacteriaceae, for which the names Desertivirga arenae gen. nov., sp. nov. and Desertivirga brevis sp. nov. are proposed. The type strains are SYSU D00823T (=CGMCC 1.18630T=MCCC 1K04973T=KCTC 82278T) and SYSU D00873T (=CGMCC 1.18629T=MCCC 1K04974T=KCTC 82281T), respectively. Accordingly, the reclassification of P. xinjiangensis as Desertivirga xinjiangensis comb. nov., and P. mongoliensis as Paradesertivirga mongoliensis gen. nov., comb. nov. are also proposed.


Assuntos
Pedobacter , Filogenia , Microbiologia do Solo , Composição de Bases , China , Clima Desértico , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Pedobacter/genética , Pedobacter/classificação , Pedobacter/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados
16.
Front Microbiol ; 15: 1358222, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38784797

RESUMO

Barkol Lake, a shrinking hypersaline lake situated in the northeast of Xinjiang, China, has experienced the exposure of its riverbed and the gradual drying up of its original sediment due to climate change and human activities, resulting in the formation of alkaline soils. These changes have correspondingly altered the physicochemical characteristics of the surrounding environment. Microorganisms play a crucial role, with special functioning involved in various nutrient cycling and energy transfer in saline lake environments. However, little is known about how the microbial community dynamics and metabolic functions in this shrinking saline lake relate to the degradation process. To address this knowledge gap, a cultivation-independent method of amplicon sequencing was used to identify and analyze the microbial community and its potential ecological functions in the sediment and degraded area. The microbial community diversity was found to be significantly lower in the degraded areas than in the sediment samples. The Pseudomonadota was dominant in Barkol Saline Lake. The abundance of Desulfobacterota and Bacillota in the degraded areas was lower than in the lake sediment, while Pseudomonadota, Acidobacteriota, and Actinobacteriota showed an opposite trend. The ßNTI showed that microbial community assembly was primarily associated with deterministic processes in Barkol Saline Lake ecosystems and stochastic processes at the boundary between sediment and degraded areas. Functional predictions showed that sulfur metabolism, particularly sulfate respiration, was much higher in sediment samples than in the degraded areas. Overall, these findings provided a possible perspective for us to understand how microorganisms adapt to extreme environments and their role in saline lakes under environmental change.

17.
Antonie Van Leeuwenhoek ; 117(1): 83, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806744

RESUMO

An aerobic, Gram-stain-negative, motile rod bacterium, designated as SYSU BS000021T, was isolated from a black soil sample in Harbin, Heilongjiang province, China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belongs to the genus Methylobacterium, and showed the highest sequence similarity to Methylobacterium segetis KCTC 62267 T (98.51%) and Methylobacterium oxalidis DSM 24028 T (97.79%). Growth occurred at 20-37℃ (optimum, 28 °C), pH 6.0-8.0 (optimum, pH 7.0) and in the presence of 0% (w/v) NaCl. Polar lipids comprised of phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified aminolipid and one unidentified polar lipid. The major cellular fatty acids (> 5%) were C18:0 and C18:1 ω7c and/or C18:1 ω6c. The predominant respiratory quinone was Q-10. The genomic G + C content was 68.36% based on the whole genome analysis. The average nucleotide identity (≤ 83.5%) and digital DNA-DNA hybridization (≤ 27.3%) values between strain SYSU BS000021T and other members of the genus Methylobacterium were all lower than the threshold values recommended for distinguishing novel prokaryotic species. Based on the results of phenotypic, chemotaxonomic and phylogenetic analyses, strain SYSU BS000021T represents a novel species of the genus Methylobacterium, for which the name Methylobacterium nigriterrae sp. nov. is proposed. The type strain of the proposed novel species is SYSU BS000021T (= GDMCC 1.3814 T = KCTC 8051 T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Methylobacterium , Filogenia , RNA Ribossômico 16S , Microbiologia do Solo , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Ácidos Graxos/química , Methylobacterium/genética , Methylobacterium/classificação , Methylobacterium/isolamento & purificação , China , Hibridização de Ácido Nucleico , Análise de Sequência de DNA , Fosfolipídeos/análise
18.
Microorganisms ; 12(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38792780

RESUMO

The degradation of farmland in China underscores the need for developing and utilizing saline-alkali soil. Soil health relies on microbial activity, which aids in the restoration of the land's ecosystem, and hence it is important to understand microbial diversity. In the present study, two Gram-stain-positive strains HR 1-10T and J-A-003T were isolated from saline-alkali soil. Preliminary analysis suggested that these strains could be a novel species. Therefore, the taxonomic positions of these strains were evaluated using polyphasic analysis. Phylogenetic and 16S rRNA gene sequence analysis indicated that these strains should be assigned to the genus Halalkalibacter. Cell wall contained meso-2,6-diaminopimelic acid. The polar lipids present in both strains were diphosphatidyl-glycerol, phosphatidylglycerol, and an unidentified phospholipid. The major fatty acids (>10%) were anteiso-C15:0, C16:0 and iso-C15:0. Average nucleotide identity and digital DNA#x2013;DNA hybridization values were below the threshold values (95% and 70%, respectively) for species delineation. Based on the above results, the strains represent two novel species of the genus Halalkalibacter, for which the names Halalkalibacter flavus sp. nov., and Halalkalibacter lacteus sp. nov., are proposed. The type strains are HR 1-10T (=GDMCC 1.2946T = MCCC 1K08312T = JCM 36285T), and J-A-003T (=GDMCC 1.2949T = MCCC 1K08417T = JCM 36286T).

19.
Acta Pharmacol Sin ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789495

RESUMO

Paclitaxel (PTX) serves as a primary chemotherapy agent against diverse solid tumors including breast cancer, lung cancer, head and neck cancer and ovarian cancer, having severe adverse effects including PTX-induced peripheral neuropathy (PIPN) and hypersensitivity reactions (HSR). A recommended anti-allergic agent diphenhydramine (DIP) has been used to alleviate PTX-induced HSR. Desloratadine (DLT) is a third generation of histamine H1 receptor antagonist, but also acted as a selective antagonist of 5HTR2A. In this study we investigated whether DLT ameliorated PIPN-like symptoms in mice and the underlying mechanisms. PIPN was induced in male mice by injection of PTX (4 mg/kg, i.p.) every other day for 4 times. The mice exhibited 50% reduction in mechanical threshold, paw thermal response latency and paw cold response latency compared with control mice. PIPN mice were treated with DLT (10, 20 mg/kg, i.p.) 30 min before each PTX administration in the phase of establishing PIPN mice model and then administered daily for 4 weeks after the model was established. We showed that DLT administration dose-dependently elevated the mechanical, thermal and cold pain thresholds in PIPN mice, whereas administration of DIP (10 mg/kg, i.p.) had no ameliorative effects on PIPN-like symptoms. We found that the expression of 5HTR2A was selectively elevated in the activated spinal astrocytes of PIPN mice. Spinal cord-specific 5HTR2A knockdown by intrathecal injection of AAV9-5Htr2a-shRNA significantly alleviated the mechanical hyperalgesia, thermal and cold hypersensitivity in PIPN mice, while administration of DLT (20 mg/kg) did not further ameliorate PIPN-like symptoms. We demonstrated that DLT administration alleviated dorsal root ganglion neuronal damage and suppressed sciatic nerve destruction, spinal neuron apoptosis and neuroinflammation in the spinal cord of PIPN mice. Furthermore, we revealed that DLT administration suppressed astrocytic neuroinflammation via the 5HTR2A/c-Fos/NLRP3 pathway and blocked astrocyte-neuron crosstalk by targeting 5HTR2A. We conclude that spinal 5HTR2A inhibition holds promise as a therapeutic approach for PIPN and we emphasize the potential of DLT as a dual-functional agent in ameliorating PTX-induced both PIPN and HSR in chemotherapy. In summary, we determined that spinal 5HTR2A was selectively activated in PIPN mice and DLT could ameliorate the PTX-induced both PIPN- and HSR-like pathologies in mice. DLT alleviated the damages of DRG neurons and sciatic nerves, while restrained spinal neuronal apoptosis and CGRP release in PIPN mice. The underlying mechanisms were intensively investigated by assay against the PIPN mice with 5HTR2A-specific knockdown in the spinal cord by injection of adeno-associated virus 9 (AAV9)-5Htr2a-shRNA. DLT inhibited astrocytic NLRP3 inflammasome activation-mediated spinal neuronal damage through 5HTR2A/c-FOS pathway. Our findings have supported that spinal 5HTR2A inhibition shows promise as a therapeutic strategy for PIPN and highlighted the potential advantage of DLT as a dual-functional agent in preventing against PTX-induced both PIPN and HSR effects in anticancer chemotherapy.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38747701

RESUMO

Two Gram-stain-negative strains, designed SYSU M86414T and SYSU M84420, were isolated from marine sediment samples of the South China Sea (Sansha City, Hainan Province, PR China). These strains were aerobic and could grow at pH 6.0-8.0 (optimum, pH 7.0), 4-37 °C (optimum, 28 °C), and in the presence of 0-10 % NaCl (w/v; optimum 3 %). The predominant respiratory menaquinone of strains SYSU M86414T and SYSU M84420 was MK-6. The primary cellular polar lipid was phosphatidylethanolamine. The major cellular fatty acids (>10 %) in both strains were iso-C15 : 0, iso-C15 : 1 G, and iso-C17 : 0 3-OH. The DNA G+C content of strains SYSU M86414T and SYSU M84420 were both 42.10 mol%. Phylogenetic analyses based on 16S rRNA gene sequences and core genes indicated that these novel strains belonged to the genus Flagellimonas and strain SYSU M86414T showed the highest 16S rRNA gene sequence similarity to Flagellimonas marinaquae JCM 11811T (98.83 %), followed by Flagellimonas aurea BC31-1-A7T (98.62 %), while strain SYSU M84420 had highest 16S rRNA gene sequence similarity to F. marinaquae JCM 11811T (98.76 %) and F. aurea BC31-1-A7T (98.55 %). Based on the results of polyphasic analyses, strains SYSU M86414T and SYSU M84420 should be considered to represent a novel species of the genus Flagellimonas, for which the name Flagellimonas halotolerans sp. nov. is proposed. The type strain of the proposed novel isolate is SYSU M86414T (=GDMCC 1.3806T=KCTC 102040T).


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Sedimentos Geológicos , Filogenia , RNA Ribossômico 16S , Água do Mar , Análise de Sequência de DNA , Vitamina K 2 , China , RNA Ribossômico 16S/genética , Sedimentos Geológicos/microbiologia , Ácidos Graxos/análise , Água do Mar/microbiologia , DNA Bacteriano/genética , Vitamina K 2/análogos & derivados , Vitamina K 2/análise , Fosfatidiletanolaminas , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA