Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
BMC Med Genomics ; 17(1): 240, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39354545

RESUMO

OBJECTIVE: This study aims to assess the in vitro drug susceptibility of various Carbapenemase-Producing Enterobacteriaceae (CPE) genotypes and elucidate the underlying mechanisms of amikacin resistance. METHODS: A total of 72 unique CPE strains were collected from the Second Hospital of Jiaxing between 2019 and 2022, including 51 strains of Klebsiella pneumoniae, 11 strains of Escherichia coli, 6 strains of Enterobacter cloacae, 2 strains of Klebsiella aerogenes, 1 strain of Citrobacter freundii, and 1strain of Citrobacter werkmanii. Among these strains, 24 carried blaKPC gene, 20 carried blaNDM gene, 23 carried blaOXA-48-like gene, and 5 carried both blaKPC and blaNDM. We measured the in vitro activity of amikacin and other common antibiotics. Strains carrying blaOXA-48-like gene were selected for whole genome sequencing (WGS) via next-generation sequencing to identify genes related to antimicrobial resistance (AMR) and virulence factor (VF). RESULTS: Out of the 72 CPE strains tested, 41.7% exhibited resistance to amikacin. The drug resistance rates for K. pneumoniae, E. coli, and Enterobacter spp. were 51.0%, 27.3%, and 10.0%, respectively. The majority of the CPE strains (> 90%) displayed resistance to cephalosporins and carbapenems, while most of them were sensitive to polymyxin B and tigecycline (97.2% and 94.4%). The amikacin resistance rate was 100% for strains carrying blaOXA-48, 20.8% for those with blaKPC, 5.0% for those with blaNDM, and 20.0% for those with both blaKPC and blaNDM. These differences were statistically significant (P < 0.05). Through sequencing, we detected aminoglycoside resistance genes rmtF and aac(6')-Ib, VF genes iucABCD and rmpA2 in OXA-48-producing multidrug resistance and highly virulent strains. These genes were located on a IncFIB- and IncHI1B-type plasmid, respectively. Both plasmids were highly homologous to the plasmid from OXA-232 strains in Zhejiang province and Shanghai province. Integration of these resistance genes into the IncFIB plasmid, facilitated by the IS6 and/or Tn3 transposons, resulted in OXA232-producing K. pneumoniae with amikacin resistance. CONCLUSION: This study identified significant amikacin resistance in CPE strains, particularly in those carrying the blaOXA-48 gene. Resistance genes rmtF and aac(6')-Ib were identified on plasmids. These results highlight the need for careful monitoring of amikacin resistance.


Assuntos
Amicacina , Antibacterianos , Proteínas de Bactérias , Enterobacteriáceas Resistentes a Carbapenêmicos , Testes de Sensibilidade Microbiana , beta-Lactamases , Amicacina/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Antibacterianos/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Farmacorresistência Bacteriana/genética , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/genética , Sequenciamento Completo do Genoma
2.
Poult Sci ; 103(12): 104321, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39361997

RESUMO

The circadian clock is crucial for maintaining lipid metabolism homeostasis in mammals. Despite the economic importance of fat content in poultry, research on the regulatory effects and molecular mechanisms of the circadian clock on avian hepatic lipid metabolism has been limited. In this study, we observed significant diurnal variations (P<0.05) in triglyceride (TG), free fatty acids (FFA), fatty acid synthase (FAS), and total cholesterol (TC) levels in the chicken embryonic liver under 12-h light/12-h dark incubation conditions, with TG, FFA, and TC concentrations showing significant cosine rhythmic oscillations (P<0.05). However, such rhythmic variations were not observed under complete darkness incubation conditions. Using transcriptome sequencing technology, we identified 157 genes significantly upregulated at night and 313 genes significantly upregulated during the 12-h light/12-h dark cycle. These circadian differential genes are involved in processes and pathways such as lipid catabolic process regulation, meiotic cell cycle, circadian rhythm regulation, positive regulation of the MAPK cascade, and glycerolipid metabolism. Weighted gene co-expression network analysis (WGCNA) revealed 3 modules-green, blue, and red-that significantly correlate with FFA, FAS, and TG, respectively. Genes within these modules were enriched in processes and pathways including the cell cycle, light stimulus response, circadian rhythm regulation, phosphorylation, positive regulation of the MAPK cascade, and lipid biosynthesis. Notably, we identified ten hub genes, including protein kinase C delta (PRKCD), polo like kinase 4 (PLK4), clock circadian regulator (CLOCK), steroid 5 alpha-reductase 3 (SRD5A3), BUB1 mitotic checkpoint serine/threonine kinase (BUB1B), shugoshin 1 (SGO1), NDC80 kinetochore complex component (NDC80), NIMA related kinase 2 (NEK2), minichromosome maintenance complex component 4 (MCM4), polo like kinase 1 (PLK1), potentially link circadian regulation with lipid metabolic homeostasis. These findings demonstrate the regulatory role of the circadian clock in chicken liver lipid metabolism homeostasis and provide a theoretical basis and molecular targets for optimizing the circadian clock to reduce excessive fat deposition in chickens, which is significant for the healthy development of the poultry industry.

3.
PLoS One ; 19(7): e0307995, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39074104

RESUMO

Ciprofol is a novel short-acting intravenous anaesthetic developed in China that is mainly metabolized by cytochrome P450 2B6 (CYP2B6) and uridine diphosphate glucuronosyltransferase 1A9 (UGT1A9). Currently, insufficient evidence is available to support drug‒drug interactions between ciprofol and CYP2B6 inactivators. Here, we established a high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method to assess the concentration of ciprofol and investigated the effects of psoralen and clopidogrel on the metabolism of ciprofol in liver microsomes and rats. In rat and human liver microsomes, the median inhibitory concentration (IC50) values of psoralen were 63.31 µmol·L-1 and 34.05 µmol·L-1, respectively, showing mild inhibitory effects on ciprofol metabolism, whereas the IC50 values of clopidogrel were 6.380 µmol·L-1 and 2.565 µmol·L-1, respectively, with moderate inhibitory effects. SD rats were randomly divided into three groups: psoralen (27 mg·kg-1), clopidogrel (7.5 mg·kg-1), and the same volume of 0.5% carboxy methyl cellulose. After 7 days, all rats were injected with 2.4 mg·kg-1 ciprofol. Compared with the control group, the AUC and MRT values of ciprofol in the psoralen and clopidogrel groups were significantly greater, whereas the CL values were significantly lower. In addition, the durations of loss of righting reflex (LORR) in the psoralen and clopidogrel groups were 16.1% and 23.0% longer than that in the control group, respectively. In conclusion, psoralen and clopidogrel inhibit ciprofol metabolism to different degrees and prolong the duration of LORR in rats.


Assuntos
Clopidogrel , Citocromo P-450 CYP2B6 , Microssomos Hepáticos , Ratos Sprague-Dawley , Animais , Humanos , Clopidogrel/metabolismo , Clopidogrel/farmacologia , Ratos , Microssomos Hepáticos/metabolismo , Masculino , Citocromo P-450 CYP2B6/metabolismo , Inibidores do Citocromo P-450 CYP2B6/metabolismo , Inibidores do Citocromo P-450 CYP2B6/farmacologia , Ticlopidina/metabolismo , Ticlopidina/farmacologia , Ticlopidina/análogos & derivados , Ficusina/farmacologia , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Interações Medicamentosas , Fenilacetatos , Tiofenos
4.
Front Microbiol ; 15: 1413618, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39050625

RESUMO

Background: Leveraging well-established DNA-level drug resistance mechanisms, whole-genome sequencing (WGS) has emerged as a valuable methodology for predicting drug resistance. As the most effective second-line anti-tuberculosis (anti-TB) drugs, fluoroquinoloness (FQs) are generally used to treat multidrug-resistant tuberculosis (MDR-TB, defined as being resistant to resistant to rifampicin and isoniazid) or rifampicin-resistant tuberculosis (RR-TB). However, FQs are also commonly used in the management of other bacterial infections. There are few published data on the rates of FQs resistance among rifampicin-susceptible TB. The prevalence of FQs resistance among TB patients who are rifampicin-susceptible has not been studied in Zhejiang Province, China. The goal of this study was to provide a baseline characterization of the prevalence of FQs resistance, particularly among rifampicin-susceptible TB in Zhejiang Province, China. Methods: Based on WGS, we have investigated the prevalence of FQs resistance among rifampicin-susceptible TB in Zhejiang Province. All pulmonary TB patients with positive cultures who were identified in Zhejiang area during TB drug resistance surveillance from 2018 to 2019 have enrolled in this population-based retrospective study. Results: The rate of FQs resistance was 4.6% (32/698) among TB, 4.0% (27/676) among rifampicin-susceptible TB, and 22.7% (5/22) among RR-TB. According to WGS, strains that differ within 12 single-nucleotide polymorphisms (SNPs) were considered to be transmission of FQ-resistant strains. Specifically, 3.7% (1/27) of FQs resistance was caused by the transmission of FQs-resistant strains among the rifampicin-susceptible TB and 40.7% (11/27) of FQs resistance was identified as hetero-resistance. Conclusion: The prevalence of FQs resistance among TB patients who were rifampicin-susceptible was severe in Zhejiang. The emergence of FQs resistance in TB isolates that are rifampicin-susceptible was mainly caused by the selection of drug-resistant strains. In order to prevent the emergence of FQs resistance, the WGS-based surveillance system for TB should be urgently established, and clinical awareness of the responsible use of FQs for respiratory infections should be enhanced.

5.
PLoS One ; 19(6): e0297713, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38917098

RESUMO

OBJECTIVE: N-butylphthalide (NBP) is a monomeric compound extracted from natural plant celery seeds, whether intestinal microbiota alteration can modify its pharmacokinetics is still unclear. The purpose of this study is to investigate the effect of intestinal microbiota alteration on the pharmacokinetics of NBP and its related mechanisms. METHODS: After treatment with antibiotics and probiotics, plasma NBP concentrations in SD rats were determined by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The effect of intestinal microbiota changes on NBP pharmacokinetics was compared. Intestinal microbiota changes after NBP treatment were analyzed by 16S rRNA sequencing. Expressions of CYP3A1 mRNA and protein in the liver and small intestine tissues under different intestinal flora conditions were determined by qRT-PCR and Western Blot. KEGG analysis was used to analyze the effect of intestinal microbiota changes on metabolic pathways. RESULTS: Compared to the control group, the values of Cmax, AUC0-8, AUC0-∞, t1/2 in the antibiotic group increased by 56.1% (P<0.001), 56.4% (P<0.001), 53.2% (P<0.001), and 24.4% (P<0.05), respectively. In contrast, the CL and Tmax values decreased by 57.1% (P<0.001) and 28.6% (P<0.05), respectively. Treatment with antibiotics could reduce the richness and diversity of the intestinal microbiota. CYP3A1 mRNA and protein expressions in the small intestine of the antibiotic group were 61.2% and 66.1% of those of the control group, respectively. CYP3A1 mRNA and protein expressions in the liver were 44.6% and 63.9% of those in the control group, respectively. There was no significant change in the probiotic group. KEGG analysis showed that multiple metabolic pathways were significantly down-regulated in the antibiotic group. Among them, the pathways of drug metabolism, bile acid biosynthesis and decomposition, and fatty acid synthesis and decomposition were related to NBP biological metabolism. CONCLUSION: Antibiotic treatment could affect the intestinal microbiota, decrease CYP3A1 mRNA and protein expressions and increase NBP exposure in vivo by inhibiting pathways related to NBP metabolism.


Assuntos
Antibacterianos , Benzofuranos , Citocromo P-450 CYP3A , Microbioma Gastrointestinal , Ratos Sprague-Dawley , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Ratos , Benzofuranos/farmacocinética , Masculino , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética , Fígado/metabolismo , Fígado/efeitos dos fármacos , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Intestino Delgado/efeitos dos fármacos
6.
Infect Drug Resist ; 17: 1781-1790, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736433

RESUMO

Carbapenem-resistant Salmonella enterica (S. enterica) pose a significant threat to public health, causing gastroenteritis and invasive infections. We report the first emergence of a carbapenem-resistant S. enterica serovar London strain, A132, carrying the blaNDM-5 gene in China. Whole-genome sequencing and bioinformatics analysis assigned A132 to be ST155, a multidrug-resistant clone frequently reported in China. The strain A132 exhibited resistance to multiple antibiotics, with 20 acquired antibiotic resistance genes (ARGs) identified, predominantly located on the IncFIB plasmid (pA132-1-NDM). Notably, the blaNDM-5 gene was located within an IS26 flanked-class 1 integron-ISCR1 complex, comprising two genetic cassettes. One cassette is the class 1 integron, which may facilitate the transmission of the entire complex, while the other is the blaNDM-5-containing ISCR1-IS26-flanked cassette, carrying multiple other ARGs. Genbank database search based on the blaNDM-5-carrying cassette identified a similar genetic context found in transmissible IncFIA plasmids from Escherichia coli (p91) and Enterobacter hormaechei (p388) with a shared host range, suggesting the potential for cross-species transmission of blaNDM-5. To our knowledge, this is the first reported case of Salmonella serovar London ST155 harboring blaNDM-5 gene. Phylogenetic analysis indicated a close relationship between A132 and eight S. London ST155 strains isolated from the same province. However, A132 differed by carrying the blaNDM-5 gene and four unique ARGs. Given the high transmissibility of the F-type plasmid harboring blaNDM-5 and 18 other ARGs, it is imperative to implement vigilant surveillance and adopt appropriate infection control measures to mitigate the threat to public health.

7.
Infect Drug Resist ; 17: 2017-2029, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800581

RESUMO

Objective: To define the antifungal activity of n-butylphthalide alone or in combination with fluconazole in Candida glabrata and Candida tropicalis. Methods: The antifungal activity of n-butylphthalide alone and in combination with fluconazole was investigated by the classical broth microdilution method and the time-killing curve method. The QRT-PCR method was used to determine gene expressions changes of mitochondrial respiratory chain enzymes, drug efflux pumps and drug target enzymes in Candida glabrata and Candida tropicalis after n-butylphthalide treatment. Results: The MIC values of n-butylphthalide against Candida glabrata and Candida tropicalis ranged from 16 to 64 µg·mL-1. The FICI value of the combination of n-butylphthalide and fluconazole against drug-resistant Candida glabrata and Candida tropicalis ranged from 0.5001 to 0.5315 with partial synergism. Time-killing curves showed that 256 µg·mL-1 n-butylphthalide significantly inhibited the growth of drug-resistant colonies of Candida glabrata and Candida tropicalis, and 128 µg·mL-1 n-butylphthalide combined with 1 µg·mL-1 fluconazole had an additive effect. N-butylphthalide could alter the expression of mitochondrial respiratory chain enzymes COX1, COX2, COX3, and CYTB genes in Candida glabrata and Candida tropicalis (P< 0.05) and downregulate the expression of the drug efflux pump genes CDR1 and CDR2 in drug-resistant Candida glabrata to 3.36% and 3.65%, respectively (P<0.001), but did not affect the drug target enzyme ERG11 in drug-resistant Candida tropicalis. Conclusion: N-butylphthalide had antifungal activity against Candida glabrata and Candida tropicalis. N-butylphthalide improved the activity of fluconazole against drug-resistant Candida glabrata by affecting the expression of mitochondrial respiratory chain enzyme genes and reversing the high expression of drug efflux pump genes CDR1 and CDR2.

8.
Infect Genet Evol ; 121: 105603, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723983

RESUMO

In the mountainous, rural regions of eastern China, tuberculosis (TB) remains a formidable challenge; however, the long-term molecular epidemiological surveillance in these regions is limited. This study aimed to investigate molecular and spatial epidemiology of TB in two mountainous, rural counties of Zhejiang Province, China, from 2015 to 2021, to elucidate the recent transmission and drug-resistance profiles. The predominant Lineage 2 (L2) Beijing family accounted for 80.1% of total 532 sequenced Mycobacterium tuberculosis (Mtb) strains, showing consistent prevalence over seven years. Gene mutations associated with drug resistance were identified in 19.4% (103/532) of strains, including 47 rifampicin or isoniazid-resistant strains, eight multi-drug-resistant (MDR) strains, and five pre-extensively drug-resistant (pre-XDR) strains. Genomic clustering revealed 53 distinct clusters with an overall transmission clustering rate of 23.9% (127/532). Patients with a history of retreatment and those infected with L2 strains had a higher risk of recent transmission. Spatial and epidemiological analysis unveiled significant transmission hotspots, especially in densely populated urban areas, involving various public places such as medical institutions, farmlands, markets, and cardrooms. The study emphasizes the pivotal role of Beijing strains and urban-based TB transmission in the western mountainous regions in Zhejiang, highlighting the urgent requirement for specific interventions to mitigate the impact of TB in these unique communities.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , China/epidemiologia , Mycobacterium tuberculosis/genética , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Estudos Prospectivos , Incidência , Tuberculose/epidemiologia , Tuberculose/transmissão , Tuberculose/microbiologia , Análise Espacial , Adulto Jovem , Adolescente , Idoso , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/transmissão , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Epidemiologia Molecular , Antituberculosos/farmacologia , Genômica/métodos , Filogenia
9.
Biol Trace Elem Res ; 202(11): 4978-4987, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38413467

RESUMO

This study aimed to explore the association between the dietary antioxidant quality scores (DAQS) and all-cause mortality in hypertensive adults. In this retrospective cohort study, participants aged ≥ 18 years with hypertension were extracted from the National Health and Nutrition Examination Survey (NAHNES) 2007-2018. Outcome was all-cause mortality of hypertensive participants. DAQS was the exposure variable calculated based on the intake of vitamin A, C, E, zinc, selenium, and magnesium. The weighted univariable and multivariable COX proportional hazards regression models were utilized to explore the association between the DAQS and the all-cause mortality in hypertensive patients and were described as hazard ratios (HRs) and 95% confidence intervals (CIs). Subgroup analyses based on different age, gender, diabetes, and cardiovascular disease (CVD) history were further assessed this association. A total of 16,240 participants were finally included in this study. Until 12 December 2019, 2710 (16.69%) all-cause deaths were documented. After adjustment for confounding variables, high DAQS was associated with the lower all-cause mortality (HR = 0.83, 95%CI: 0.72-0.96) in hypertensive patients. Subgroup analyses suggested that the association between DAQS and the all-cause mortality in hypertensive patients remain robust, especially in patients with female (HR = 0.77, 95%CI: 0.63-0.95), aged ≥ 60 years (HR = 0.81, 95%CI: 0.69-0.96). High DAQS was associated with the lower odds of all-cause mortality in adults with hypertension and are a promising intervention to be further explored in hypertensive patients.


Assuntos
Antioxidantes , Hipertensão , Inquéritos Nutricionais , Humanos , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Antioxidantes/metabolismo , Antioxidantes/análise , Hipertensão/mortalidade , Adulto , Idoso , Bases de Dados Factuais , Dieta , Modelos de Riscos Proporcionais , Estudos de Coortes
10.
Front Cell Infect Microbiol ; 14: 1327477, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384306

RESUMO

Background: Tuberculosis (TB), particularly drug-resistant TB (DR-TB), remains a significant public health concern in Ningbo, China. Understanding its molecular epidemiology and spatial distribution is paramount for effective control. Methods: From December 24, 2020, to March 12, 2023, we collected clinical Mycobacterium tuberculosis (MTB) strains in Ningbo, with whole-genome sequencing performed on 130 MTB strains. We analyzed DR-related gene mutations, conducted phylogenetic and phylodynamic analyses, identified recent transmission clusters, and assessed spatial distribution. Results: Among 130 DR-TB cases, 41% were MDR-TB, 36% pre-XDR-TB, 19% RR-TB, and 3% HR-TB. The phylogenetic tree showed that 90% of strains were Lineage 2 (Beijing genotype), while remaining 10% were Lineage 4 (Euro-American genotype). The spatial analysis identified hotspots of DR-TB in Ningbo's northern region, particularly in traditional urban centers. 31 (24%) of the DR-TB cases were grouped into 7 recent transmission clusters with a large outbreak cluster containing 15 pre-XDR-TB patients. Epidemiological analyses suggested a higher risk of recent DR-TB transmission among young adult patients who frequently visited Internet cafes, game rooms, and factories. Conclusion: Our study provides comprehensive insights into the epidemiology and genetics of DR-TB in Ningbo. The presence of genomic clusters highlights recent transmission events, indicating the need for targeted interventions. These findings are vital for informing TB control strategies in Ningbo and similar settings.


Assuntos
Tuberculose Extensivamente Resistente a Medicamentos , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Adulto Jovem , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Tuberculose Extensivamente Resistente a Medicamentos/tratamento farmacológico , Filogenia , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Genótipo , China/epidemiologia , Genômica , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana
11.
Bioresour Technol ; 394: 130238, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142908

RESUMO

The nitrite (NO2-) accumulation in partial denitrification (PD) offers the possibility of widespread application of anammox process. In this study, the rapid establishment of PD granular system was achieved by increasing nitrogen loading rates (NLR) from 0.9 to 4.8 kg N/(m3·d), with the nitrate-to-nitrite transforming ratio (NTR) increasing rapidly to 87.0 % within 18 days. Growth evidence indicated that the functional genus Thauera was significantly enriched (12.5 %→76.4 %), with nitrate (NO3-) reduction rates (SNO3) improving by 5.4 times from 13.0 to 70.7 mg N/(g VSS·h). Importantly, the rapid aggregation of PD biomass as granules ensured robustness and resistance of PD feeding with the electroplating tail wastewater (NO3--N of 103.0 ± 5.0 mg/L), obtaining stable NTR above 91.5 %. This study demonstrated the achievability of the fast development of PD granules and the adaptability and robustness of treating nitrate-containing industrial wastewater, which provided a promising method for efficient nitrogen transformation in industrial applications.


Assuntos
Nitritos , Águas Residuárias , Nitritos/análise , Nitratos , Nitrogênio , Esgotos , Desnitrificação , Reatores Biológicos , Oxirredução
12.
Animals (Basel) ; 13(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38067074

RESUMO

Abnormal function and the fibrosis of endometrium caused by endometritis in cows may lead to difficult embryo implantation and uterine cavity adhesions. Emerging evidence indicates that ginsenoside Rg1 can effectively resist inflammation and pathological fibrosis in different organs. It is hypothesized that ginsenoside Rg1 may possess the potential to mitigate endometrial fibrosis induced by lipopolysaccharides (LPS) in dairy cows. Herein, a model of LPS-stimulated fibrosis was constructed using bovine endometrial epithelial cell line (BEND) cells and ICR mice. Western blotting was used to detect the protein level, and reactive oxygen species (ROS) content was measured by means of DCFH-DA. The uterine tissue structure was stained with H&E and Masson staining. The murine endometrium was assessed for oxidative stress by detecting the concentration of MDA together with the activity of enzymatic antioxidants SOD and CAT. Ginsenoside Rg1 interfered with NLRP3 activation by reducing ROS generation. After the application of ROS inhibitor NAC and NLRP3 inhibitor MCC950, ginsenoside Rg1 could interfere in the ROS/NLRP3 inflammasome signaling pathway by suppressing the epithelial-mesenchymal transition (EMT) of BEND cells. Our in vivo data showed that ginsenoside Rg1 relieved endometrial fibrosis of the mouse model of LPS-induced endometritis by restraining the ROS/NLRP3 inflammasome signaling pathway. Ginsenoside Rg1 inhibits LPS-induced EMT progression in BEND cells probably by inhibiting the activation of ROS-NLRP3 inflammasome.

13.
Front Cell Infect Microbiol ; 13: 1239234, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928180

RESUMO

Promyelocytic leukemia (PML) protein constitutes an indispensable element within PML-nuclear bodies (PML-NBs), playing a pivotal role in the regulation of multiple cellular functions while coordinating the innate immune response against viral invasions. Simultaneously, numerous viruses elude immune detection by targeting PML-NBs. Japanese encephalitis virus (JEV) is a flavivirus that causes Japanese encephalitis, a severe neurological disease that affects humans and animals. However, the mechanism through which JEV evades immunity via PML-NBs has been scarcely investigated. In the present study, PK15 cells were infected with JEV, and the quantity of intracellular PML-NBs was enumerated. The immunofluorescence results indicated that the number of PML-NBs was significantly reduced in JEV antigen-positive cells compared to viral antigen-negative cells. Subsequently, ten JEV proteins were cloned and transfected into PK15 cells. The results revealed that JEV non-structural proteins, NS2B, NS3, NS4A, NS4B, and NS5, significantly diminished the quantity of PML-NBs. Co-transfection was performed with the five JEV proteins and various porcine PML isoforms. The results demonstrated that NS2B colocalized with PML4 and PML5, NS4A colocalized with PML1 and PML4, NS4B colocalized with PML1, PML3, PML4, and PML5, while NS3 and NS5 interacted with all five PML isoforms. Furthermore, ectopic expression of PML isoforms confirmed that PML1, PML3, PML4, and PML5 inhibited JEV replication. These findings suggest that JEV disrupts the structure of PML-NBs through interaction with PML isoforms, potentially leading to the attenuation of the host's antiviral immune response.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Animais , Antígenos Virais , Corpos Nucleares , Proteína da Leucemia Promielocítica , Isoformas de Proteínas , Suínos , Fatores de Transcrição
14.
Virol J ; 20(1): 280, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031162

RESUMO

BACKGROUND: Promyelocytic leukemia protein (PML) is a primary component of PML nuclear bodies (PML-NBs). PML and PML-NBs play critical roles in processes like the cell cycle, DNA damage repair, apoptosis, and the antiviral immune response. Previously, we identified five porcine PML alternative splicing variants and observed an increase in the expression of these PML isoforms following Japanese encephalitis virus (JEV) infection. In this study, we examined the functional roles of these PML isoforms in JEV infection. METHODS: PML isoforms were either knocked down or overexpressed in PK15 cells, after which they were infected with JEV. Subsequently, we analyzed the gene expression of PML isoforms, JEV, and the interferon (IFN)-ß signaling pathway using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot. Viral titers were determined through 50% tissue culture infectious dose (TCID50) assays. RESULTS: Our results demonstrated that the knockdown of endogenous PML promoted JEV replication, while the overexpression of PML isoforms 1, 3, 4, and 5 (PML1, PML3, PML4, and PML5) inhibited JEV replication. Further investigation revealed that PML1, PML3, PML4, and PML5 negatively regulated the expression of genes involved in the interferon (IFN)-ß signaling pathway by inhibiting IFN regulatory factor 3 (IRF3) post-JEV infection. CONCLUSIONS: These findings demonstrate that porcine PML isoforms PML1, PML3, PML4, and PML5 negatively regulate IFN-ß and suppress viral replication during JEV infection. The results of this study provide insight into the functional roles of porcine PML isoforms in JEV infection and the regulation of the innate immune response.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Animais , Suínos , Proteína da Leucemia Promielocítica/genética , Proteína da Leucemia Promielocítica/metabolismo , Fatores de Transcrição/genética , Interferons , Isoformas de Proteínas/genética , Replicação Viral
15.
iScience ; 26(11): 108128, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867933

RESUMO

This paper proposed a method based on heart rate variability (HRV) for evaluating the accuracy of wearable devices in measuring heart rate. HRV refers to the variation in time intervals between successive heartbeats, widely used in many fields such as clinical and sports fields. Wearable devices such as Electrocardiogram (ECG) electrode patches have gained popularity due to their portability and ease of use. However, they can be prone to measurement interference caused by environmental noise, human respiration, etc. The proposed method consists of four main components: selection of "gold standard measurement devices", identification of HRV measurement metrics, construction of an HRV evaluation framework, and quantification of measurement errors. The method is validated through simulated experiments using ECG patches. The evaluation framework and quantification model established in this method have significant implications in establishment of industry standards and diagnosis of diseases in clinical practice.

16.
Front Cell Infect Microbiol ; 13: 1229284, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671147

RESUMO

Background and Aims: The incidence of OXA-232-producing carbapenem-resistant Klebsiella pneumoniae (CRKP) has been on the rise in China over the past five years, potentially leading to nosocomial epidemics. This study investigates the first outbreak of CRKP in the Second Affiliated Hospital of Jiaxing University. Methods: Between February 2021 and March 2022, 21 clinical isolates of OXA-232-producing CRKP were recovered from 16 patients in the Second Affiliated Hospital of Jiaxing University. We conducted antimicrobial susceptibility tests, whole genome sequencing, and bioinformatics to determine the drug resistance profile of these clinical isolates. Results: Whole-genome sequencing revealed that all 21 OXA-232-producing CRKP strains belonged to the sequence type 15 (ST15) and shared similar resistance, virulence genes, and plasmid types, suggesting clonal transmission between the environment and patients. Integrated genomic and epidemiological analysis traced the outbreak to two clonal transmission clusters, cluster 1 and cluster 2, including 14 and 2 patients. It was speculated that the CRKP transmission mainly occurred in the ICU, followed by brain surgery, neurosurgery, and rehabilitation department. Phylogenetic analysis indicated that the earliest outbreak might have started at least a year before the admission of the index patient, and these strains were closely related to those previously isolated from two major adjacent cities, Shanghai and Hangzhou. Comparative genomics showed that the IncFII-type and IncHI1B-type plasmids of cluster 2 had homologous recombination at the insertion sequence sites compared with the same type of plasmids in cluster 1, resulting in the insertion of 4 new drug resistance genes, including TEM-1, APH(6)-Id, APH(3'')-Ib and sul2. Conclusions: Our study observed the clonal spread of ST15 OXA-232-producing between patients and the hospital environment. The integration of genomic and epidemiological data offers valuable insights and facilitate the control of nosocomial transmission.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecção Hospitalar , Humanos , Carbapenêmicos , China , Surtos de Doenças , Hospitais de Ensino , Klebsiella pneumoniae , Filogenia
17.
Mol Immunol ; 163: 127-135, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37774455

RESUMO

The NLRP3 inflammasome is involved in many inflammatory diseases. Its activity must be strictly controlled to alleviate the inflammatory process. Autophagy plays a protective role in the negative regulation of NLRP3 inflammasome activation. However, the regulatory mechanism of autophagy controlling NLRP3 inflammasome activation remains to be further investigated. Here, we showed that in NRK-52E cells, lipopolysaccharide (LPS) and ATP stimulation significantly decreased mitochondrial membrane potential, increased ROS production and mtDNA copy number in cytosol. Moreover, autophagic flux was blocked when challenged with LPS and ATP as evidenced by increased LC3 II and p62 expression, reduced TFEB and CTSD expression, and impaired lysosomal acid environment. Furthermore, TFEB deficiency increased cytosolic mtDNA and enhanced LPS and ATP induced NLRP3 inflammasome activation and proinflammatory cytokine expression. Taken together, these findings reveal that LPS and ATP stimulation promoted NLRP3 inflammasome activation through inhibiting TFEB-mediated autophagy in NRK-52E cells, and TFEB could be a potential therapeutic target for the treatment of NLRP3 inflammasome-related kidney diseases.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipopolissacarídeos/farmacologia , Autofagia , DNA Mitocondrial , Trifosfato de Adenosina
19.
Antibiotics (Basel) ; 12(8)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37627677

RESUMO

Pulmonary tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (MTB). Whole-genome sequencing (WGS) holds great promise as an advanced technology for accurately predicting anti-TB drug resistance. The development of a reliable method for detecting drug resistance is crucial in order to standardize anti-TB treatments, enhance patient prognosis, and effectively reduce the risk of transmission. In this study, our primary objective was to explore and determine the potential of WGS for assessing drug resistance based on genetic variants recommended by the World Health Organization (WHO). A total of 1105 MTB strains were selected from samples collected from 2014-2018 in Zhejiang Province, China. Phenotypic drug sensitivity tests (DST) of the anti-TB drugs were conducted for isoniazid (INH), rifampicin (RFP), streptomycin, ethambutol, fluoroquinolones (levofloxacin and moxifloxacin), amikacin, kanamycin, and capreomycin, and the drug-resistance rates were calculated. The clean WGS data of the 1105 strains were acquired and analyzed. The predictive performance of WGS was evaluated by the comparison between genotypic and phenotypic DST results. For all anti-TB drugs, WGS achieved good specificity values (>90%). The sensitivity values for INH and RFP were 91.78% and 82.26%, respectively; however, they were ≤60% for other drugs. The positive predictive values for anti-TB drugs were >80%, except for ethambutol and moxifloxacin, and the negative predictive values were >90% for all drugs. In light of the findings from our study, we draw the conclusion that WGS is a valuable tool for identifying genome-wide variants. Leveraging the genetic variants recommended by the WHO, WGS proves to be effective in detecting resistance to RFP and INH, enabling the identification of multi-drug resistant TB patients. However, it is evident that the genetic variants recommended for predicting resistance to other anti-TB drugs require further optimization and improvement.

20.
Environ Sci Technol ; 57(24): 9075-9085, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37284751

RESUMO

The novel partial denitrification-driven anammox (PD/A) is an energy-efficient method for nitrogen removal from wastewater. However, its stability and efficiency are impeded by the competition between heterotrophic denitrifying bacteria and relatively slow-growing anammox bacteria. In this study, a PD/A granular sludge system was developed, which achieved a nitrogen removal efficiency of 94% with 98% anammox contribution, even as the temperature dropped to 9.6 °C. Analysis of bacterial activity in aggregates of different sizes revealed that the largest granules (>2.0 mm) exhibited the highest anammox activity, 2.8 times that of flocs (<0.2 mm), while the flocs showed significantly higher nitrite production rates of PD, more than six times that of the largest granules. Interestingly, fluorescent in situ hybridization (FISH) combined with confocal laser scanning microscopy (CLSM) revealed a nest-shaped structure of PD/A granules. The Thauera genus, a key contributor to PD, was highly enriched at the outer edge, providing substrate nitrite for anammox bacteria inside the granules. As temperature decreased, the flocs transformed into small granules to efficiently retain anammox bacteria. This study provides multidimensional insights into the spatiotemporal assembly and immigration of heterotrophic and autotrophic bacteria for stable and high-rate nitrogen removal.


Assuntos
Desnitrificação , Nitritos , Nitrogênio , Emigração e Imigração , Hibridização in Situ Fluorescente , Oxidação Anaeróbia da Amônia , Reatores Biológicos , Oxirredução , Esgotos/microbiologia , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA