Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Omega ; 5(42): 27164-27170, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33134676

RESUMO

Although thermal conductivity gas analyzers are ubiquitous in industry, shrinking the sensing unit to a microscopic scale is rarely achieved. Since heat transfer between a metal nanoparticle and its ambient gas changes the temperature, refractive index, and density of the gaseous surrounding, one may tackle the problem using a single nanoparticle's photothermal effect. Upon heating by a 532 nm laser, a single gold nanoparticle transfers heat to the surrounding gas environment, which results in a change in the photothermal polarization of a 633 nm probe laser. The amplitude of the photothermal signal correlates directly with the concentration of binary gas mixture. In He/Ar, He/N2, He/air, and H2/Ar binary gas mixtures, the signal is linearly proportional to the He and H2 molar concentrations up to about 10%. The photothermal response comes from the microscopic gaseous environment of a single gold nanoparticle, extending from the nanoparticle roughly to the length of the gas molecule's mean free path. This study points to a way of sensing binary gas composition in a microscopic volume using a single metal nanoparticle.

2.
ACS Sens ; 5(9): 2814-2819, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32786381

RESUMO

To reduce environmental impact and sensor footprint, researchers need cost-effective and small-size surface tension and viscosity measurement devices. New measurement principles are needed for such sensors. We demonstrate that a sessile droplet's mechanical vibration can be transformed to audible sound, by recording the ultrasonic Doppler frequency shift in the form of an acoustic signal. The recorded sound wave reveals a droplet's surface tension and its viscosity, through its frequency spectrum and attenuation rate of the signal, respectively. Based on such sensors, two chemical measurements inside sessile droplets are shown: (I) titration of a Ni2+ and Co2+ mixture with a surface-active indicator (using surface tension) and (II) measurement of the molecular weight of a polymer in solution (using viscosity). Unlike the commercial technique, our ultrasound-based sensor is cost-effective in terms of equipment price and sample volume.


Assuntos
Som , Vibração , Acústica , Tensão Superficial , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA