Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Angew Chem Int Ed Engl ; : e202409764, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39222318

RESUMO

Co-free Ni-rich layered oxides are considered a promising cathode material for next-generation Li-ion batteries due to their cost-effectiveness and high capacity. However, they still suffer from the practical challenges of low discharge capacity and poor rate capability due to the hysteresis of Li-ion diffusion kinetics. Herein, based on the regulation of the lattice magnetic frustration, the Li/Ni intermixing defects as the primary origin of kinetic hysteresis are radically addressed via the doping of the nonmagnetic Si element. Meanwhile, by adopting gradient penetration doping, a robust Si-O surface structure with reversible lattice oxygen evolution and low lattice strain is constructed on Co-free Ni-rich cathodes to suppress the formation of surface dense  barrier layer. With the remarkably enhanced Li-ion diffusion kinetics in atomic and electrode particle scales, the as-obtained cathodes (LiNixMn1-xSi0.01O2, 0.6 ≤ x ≤ 0.9) achieve superior performance in discharge capacity, rate capability, and durability. This work highlights the coupling effect of magnetic structure and interfacial chemicals on Li-ion transport properties, and the concept will inspire more researchers to conduct an intensive study.

2.
Biophys J ; 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39306670

RESUMO

α-Synuclein (α-syn) is an abundant presynaptic neuronal protein whose aggregation is strongly associated with Parkinson's disease. It has been proposed that lipid membranes significantly affect the α-syn's aggregation process. Extensive studies have been conducted to understand the interactions between α-syn and lipid membranes and have demonstrated that the N-terminus plays a critical role. However, the dynamics of the interactions and the conformational transitions of the N-terminus of α-syn at the atomistic scale details are still highly desired. In this study, we performed extensive enhanced sampling molecular dynamics simulations to quantify the folding and interactions of wild-type (WT) and N-terminally acetylated (AC) α-syn when interacting with lipid structures. We found that N-terminal acetylation significantly increases the helicity of the first few residues in solution or when interacting with lipid membranes. The observations in simulations showed that the binding of α-syn with lipid membranes mainly follows the induced-fit model, where the disordered α-syn binds with the lipid membrane through the electrostatic interactions and hydrophobic contacts with the packing defects; after stable insertion, the N-terminal acetylation promotes the helical folding of the N-terminus to enhance the anchoring, thus increasing the binding affinity. We have shown the critical role of the first N-terminal residue methionine for recognition and anchoring to the negatively charged membrane. Although N-terminal acetylation neutralizes the positive charge of Met1 that may affect the electrostatic interactions of α-syn with membranes, the increase in helicity of the N-terminus should compensate for the binding affinity. This study provides detailed insight into the folding dynamics of α-syn's N-terminus with or without acetylation in solution and upon interaction with lipids, which clarifies how the N-terminal acetylation regulates the affinity of α-syn binding to lipid membranes. It also shows how packing defects and electrostatic effects co-regulate the N-terminus of α-syn folding and its interaction with membranes.

3.
Comput Biol Med ; 182: 109198, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39341110

RESUMO

The spleen constantly clears altered red blood cells (RBCs) from the circulation, tuning the balance between RBC formation (erythropoiesis) and removal. The retention and elimination of RBCs occur predominantly in the open circulation of the spleen, where RBCs must cross submicron-wide inter-endothelial slits (IES). Several experimental and computational studies have illustrated the role of IES in filtrating the biomechanically and morphologically altered RBCs based on a rigid wall assumption. However, these studies also reported that when the size of IES is close to the lower end of clinically observed sizes (less than 0.5 µm), an unphysiologically large pressure difference across the IES is required to drive the passage of normal RBCs, sparking debates on the feasibility of the rigid wall assumption. In this work, We propose two deformable IES models, namely the passive model and the active model, aiming to explore the impact of the deformability of IES on the filtration function of the spleen. In the passive model, we implement the worm-like string model to depict the IES's deformation as it interacts with blood plasma and allows RBC to traverse. In contrast, the active model involved regulating the IES deformation based on the local pressure surrounding the slit. To demonstrate the validity of the deformable model, we simulate the filtration of RBCs with varied size and stiffness by IES under three scenarios: (1) a single RBC traversing a single slit; (2) a suspension of RBCs traversing an array of slits, mimicking in vitro spleen-on-a-chip experiments; (3) RBC suspension passing through the 3D spleen filtration unit known as'the splenon'. Our simulation results of RBC passing through a single slit show that the deformable IES model offers more accurate predictions of the critical cell surface area to volume ratio that dictate the removal of aged RBCs from circulation compared to prior rigid-wall models. Our biophysical models of the spleen-on-a-chip indicate a hierarchy of filtration function stringency: rigid model > passive model > active model, providing a possible explanation of the filtration function of IES. We also illustrate that the biophysical model of 'the splenon' enables us to replicate the ex vivo experiments involving spleen filtration of malaria-infected RBCs. Taken together, our simulation findings indicate that the deformable IES model could serve as a mesoscopic representation of spleen filtration function closer to physiological reality, addressing questions beyond the scope of current experimental and computational models and enhancing our understanding of the fundamental flow dynamics and mechanical clearance processes within in the human spleen.

4.
Bioengineering (Basel) ; 11(8)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39199705

RESUMO

Pulmonary fibrosis is a fatal lung disease affecting approximately 5 million people worldwide, with a 5-year survival rate of less than 50%. Currently, the only available treatments are palliative care and lung transplantation, as there is no curative drug for this condition. The disease involves the excessive synthesis of the extracellular matrix (ECM) due to alveolar epithelial cell damage, leading to scarring and stiffening of the lung tissue and ultimately causing respiratory failure. Although multiple factors contribute to the disease, the exact causes remain unclear. The mechanical properties of lung tissue, including elasticity, viscoelasticity, and surface tension, are not only affected by fibrosis but also contribute to its progression. This paper reviews the alteration in these mechanical properties as pulmonary fibrosis progresses and how cells in the lung, including alveolar epithelial cells, fibroblasts, and macrophages, respond to these changes, contributing to disease exacerbation. Furthermore, it highlights the importance of developing advanced in vitro models, based on hydrogels and 3D bioprinting, which can accurately replicate the mechanical and structural properties of fibrotic lungs and are conducive to studying the effects of mechanical stimuli on cellular responses. This review aims to summarize the current understanding of the interaction between the progression of pulmonary fibrosis and the alterations in mechanical properties, which could aid in the development of novel therapeutic strategies for the disease.

5.
Proc Natl Acad Sci U S A ; 121(35): e2322418121, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39159377

RESUMO

The growing world population and increasing life expectancy are driving the need to improve the quality of blood transfusion, organ transplantation, and preservation. Here, to improve the ability of red blood cells (RBCs) for normothermic machine perfusion, a biocompatible blood silicification approach termed "shielding-augmenting RBC-in-nanoscale amorphous silica (SARNAS)" has been developed. The key to RBC surface engineering and structure augmentation is the precise control of the hydrolysis form of silicic acid to realize stabilization of RBC within conformal nanoscale silica-based exoskeletons. The formed silicified RBCs (Si-RBCs) maintain membrane/structural integrity, normal cellular functions (e.g., metabolism, oxygen-carrying capability), and enhance resistance to external stressors as well as tunable mechanical properties, resulting in nearly 100% RBC cryoprotection. In vivo experiments confirm their excellent biocompatibility. By shielding RBC surface antigens, the Si-RBCs provide universal blood compatibility, the ability for allogeneic mechanical perfusion, and more importantly, the possibility for cross-species transfusion. Being simple, reliable, and easily scalable, the SARNAS strategy holds great promise to revolutionize the use of engineered blood for future clinical applications.


Assuntos
Materiais Biocompatíveis , Eritrócitos , Dióxido de Silício , Eritrócitos/metabolismo , Dióxido de Silício/química , Materiais Biocompatíveis/química , Animais , Humanos , Perfusão/métodos , Preservação de Sangue/métodos , Transfusão de Sangue/métodos , Camundongos
6.
Biophys J ; 123(9): 1069-1084, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38532625

RESUMO

Macrophage phagocytosis is critical for the immune response, homeostasis regulation, and tissue repair. This intricate process involves complex changes in cell morphology, cytoskeletal reorganization, and various receptor-ligand interactions controlled by mechanical constraints. However, there is a lack of comprehensive theoretical and computational models that investigate the mechanical process of phagocytosis in the context of cytoskeletal rearrangement. To address this issue, we propose a novel coarse-grained mesoscopic model that integrates a fluid-like cell membrane and a cytoskeletal network to study the dynamic phagocytosis process. The growth of actin filaments results in the formation of long and thin pseudopods, and the initial cytoskeleton can be disassembled upon target entry and reconstructed after phagocytosis. Through dynamic changes in the cytoskeleton, our macrophage model achieves active phagocytosis by forming a phagocytic cup utilizing pseudopods in two distinct ways. We have developed a new algorithm for modifying membrane area to prevent membrane rupture and ensure sufficient surface area during phagocytosis. In addition, the bending modulus, shear stiffness, and cortical tension of the macrophage model are investigated through computation of the axial force for the tubular structure and micropipette aspiration. With this model, we simulate active phagocytosis at the cytoskeletal level and investigate the mechanical process during the dynamic interplay between macrophage and target particles.


Assuntos
Macrófagos , Modelos Biológicos , Fagocitose , Pseudópodes , Macrófagos/citologia , Macrófagos/metabolismo , Pseudópodes/metabolismo , Membrana Celular/metabolismo , Fenômenos Biomecânicos , Citoesqueleto/metabolismo
7.
ACS Nano ; 18(4): 3542-3552, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38215406

RESUMO

Prussian blue (PB) is one of the main cathode materials with industrial prospects for the sodium ion battery. The structural stability of PB materials is directly associated with the presence of crystal water within the open 3D framework. However, there remains a lack of consensus regarding whether all forms of crystal water have detrimental effects on the structural stability of the PB materials. Currently, it is widely accepted that interstitial water is the stability troublemaker, whereas the role of coordination water remains elusive. In this work, the dynamic evolution of PB structures is investigated during the crystal water (in all forms) removal process through a variety of online monitoring techniques. It can be inferred that the PB-130 °C retains trace coordination water (1.3%) and original structural integrity, whereas PB-180 °C eliminates almost all of crystal water (∼12.1%, including both interstitial and coordinated water), but inevitably suffers from structural collapse. This is mainly because the coordinated water within the PB material plays a crucial role in maintaining structural stability via forming the -N≡C-FeLS-C≡N- conjugate bridge. Consequently, PB-130 °C with trace coordination water delivers superior reversible capacity (113.6 mAh g-1), high rate capability (charge to >80% capacity in 3 min), and long cycling stability (only 0.012% fading per cycle), demonstrating its promising prospect in practical applications.

8.
Anal Chem ; 96(2): 856-865, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104274

RESUMO

Concentration heterogeneity of diffusible reactants is a prevalent phenomenon in biochemical processes, requiring the generation of concentration gradients for the relevant experiments. In this study, we present a high-density pyramid array microfluidic network for the effective and precise generation of multiple concentration gradients. The complex gradient distribution in the 2D array can be adaptively adjusted by modulating the reactant velocities and concentrations at the inlets. In addition, the unique design of each reaction chamber and mixing block in the array ensures uniform concentrations within each chamber during dynamic changes, enabling large-scale reactions with low reactant volumes. Through detailed numerical simulation of mass transport within the complex microchannel networks, the proposed method allows researchers to determine the desired number of reaction chambers within a given concentration range based on experimental requirements and to quickly obtain the operating conditions with the help of machine learning-based prediction. The effectiveness in generating a multiple concentration gradient environment was further demonstrated by concentration-dependent calcium carbonate crystallization experiments. This device provides a highly efficient mixing and adaptable concentration platform that is well suited for high-throughput and multiplexed reactions.

9.
PLoS Comput Biol ; 19(12): e1011223, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38091361

RESUMO

Being the largest lymphatic organ in the body, the spleen also constantly controls the quality of red blood cells (RBCs) in circulation through its two major filtration components, namely interendothelial slits (IES) and red pulp macrophages. In contrast to the extensive studies in understanding the filtration function of IES, fewer works investigate how the splenic macrophages retain the aged and diseased RBCs, i.e., RBCs in sickle cell disease (SCD). Herein, we perform a computational study informed by companion experiments to quantify the dynamics of RBCs captured and retained by the macrophages. We first calibrate the parameters in the computational model based on microfluidic experimental measurements for sickle RBCs under normoxia and hypoxia, as those parameters are not available in the literature. Next, we quantify the impact of key factors expected to dictate the RBC retention by the macrophages in the spleen, namely, blood flow conditions, RBC aggregation, hematocrit, RBC morphology, and oxygen levels. Our simulation results show that hypoxic conditions could enhance the adhesion between the sickle RBCs and macrophages. This, in turn, increases the retention of RBCs by as much as four-fold, which could be a possible cause of RBC congestion in the spleen of patients with SCD. Our study on the impact of RBC aggregation illustrates a 'clustering effect', where multiple RBCs in one aggregate can make contact and adhere to the macrophages, leading to a higher retention rate than that resulting from RBC-macrophage pair interactions. Our simulations of sickle RBCs flowing past macrophages for a range of blood flow velocities indicate that the increased blood velocity could quickly attenuate the function of the red pulp macrophages on detaining aged or diseased RBCs, thereby providing a possible rationale for the slow blood flow in the open circulation of the spleen. Furthermore, we quantify the impact of RBC morphology on their tendency to be retained by the macrophages. We find that the sickle and granular-shaped RBCs are more likely to be filtered by macrophages in the spleen. This finding is consistent with the observation of low percentages of these two forms of sickle RBCs in the blood smear of SCD patients. Taken together, our experimental and simulation results aid in our quantitative understanding of the function of splenic macrophages in retaining the diseased RBCs and provide an opportunity to combine such knowledge with the current knowledge of the interaction between IES and traversing RBCs to apprehend the complete filtration function of the spleen in SCD.


Assuntos
Anemia Falciforme , Doenças Hematológicas , Humanos , Idoso , Eritrócitos , Baço/fisiologia , Macrófagos
10.
Phys Rev E ; 108(5-1): 054402, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38115453

RESUMO

Understanding the homing dynamics of individual mesenchymal stem cells (MSCs) in physiologically relevant microenvironments is crucial for improving the efficacy of MSC-based therapies for therapeutic and targeting purposes. This study investigates the passive homing behavior of individual MSCs in micropores that mimic interendothelial clefts through predictive computational simulations informed by previous microfluidic experiments. Initially, we quantified the size-dependent behavior of MSCs in micropores and elucidated the underlying mechanisms. Subsequently, we analyzed the shape deformation and traversal dynamics of each MSC. In addition, we conducted a systematic investigation to understand how the mechanical properties of MSCs impact their traversal process. We considered geometric and mechanical parameters, such as reduced cell volume, cell-to-nucleus diameter ratio, and cytoskeletal prestress states. Furthermore, we quantified the changes in the MSC traversal process and identified the quantitative limits in their response to variations in micropore length. Taken together, the computational results indicate the complex dynamic behavior of individual MSCs in the confined microflow. This finding offers an objective way to evaluate the homing ability of MSCs in an interendothelial-slit-like microenvironment.


Assuntos
Células-Tronco Mesenquimais , Microfluídica , Animais , Células-Tronco Mesenquimais/fisiologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-37842849

RESUMO

Different gravity fields have important effects on the structural morphology of bone. The fluid flow caused by loadings in the bone lacunar-canalicular system (LCS), converts mechanical signals into biological signals and regulates bone reconstruction by affecting effector cells, which ensures the efficient transport of signaling molecules, nutrients, and waste products. In this study, the fluid flow and mass transfer effects of bone lacunar-canalicular system at multi-scale were firstly investigated, and a three-dimensional axisymmetric fluid-solid coupled finite element model of the LCS within three continuous osteocytes was established. The changes in fluid pressure field, flow velocity field, and fluid shear force variation on the surface of osteocytes within the LCS were studied comparatively under different gravitational fields (0 G, 1 G, 5 G), frequencies (1 Hz, 1.5 Hz, 2 Hz) and forms of cyclic compressive loading. The results showed that different frequencies represented different exercise intensities, suggesting that high-intensity exercise may accelerate the fluid flow rate within the LCS and enhance osteocytes activity. Hypergravity enhanced the transport of solute molecules, nutrients, and signaling molecules within the LCS. Conversely, the mass transfer in the LCS may be inhibited under microgravity, which may cause bone loss and eventually lead to the onset of osteoporosis. This investigation provides theoretical guidance for rehabilitative training against osteoporosis.

12.
Biosensors (Basel) ; 13(10)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37887133

RESUMO

In this paper, a tapered fiber bioprobe based on Mach-Zehnder interference (MZI) is proposed. To retain the highly sensitive straight-tapered fiber MZI sensing structure, we designed a U-shaped transmission fiber structure for the collection of optical sensing signals to achieve a miniature-insert-probe design. The spectrum responses from the conventional straight-tapered fiber MZI sensor and our proposed sensor were compared and analyzed, and experimental results showed that our proposed sensor not only has the same sensing capability as the straight-tapered fiber sensor, but also has the advantages of being flexible, convenient, and less liquid-consuming, which are attributed to the inserted probe design. The tapered fiber bioprobe obtained a sensitivity of 1611.27 nm/RIU in the refractive index detection range of 1.3326-1.3414. Finally, immunoassays for different concentrations of human immunoglobulin G were achieved with the tapered fiber bioprobe through surface functionalization, and the detection limit was 45 ng/mL. Our tapered fiber bioprobe has the insert-probe advantages of simpleness, convenience, and fast operation. Simultaneously, it is low-cost, highly sensitive, and has a low detection limit, which means it has potential applications in immunoassays and early medical diagnosis.


Assuntos
Técnicas Biossensoriais , Fibras Ópticas , Humanos , Interferometria/métodos , Refratometria/métodos , Imunoensaio
13.
Opt Lett ; 48(17): 4456-4459, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656527

RESUMO

This study proposes an all-optical phase modulator based on a compact fiber optic interferometer combined with Ti3C2Tx MXene-incorporated PDMS. Due to the high photothermal conversion efficiency of MXene and the high thermo-optic coefficient of PDMS, changes in pump power can be effectively converted into refractive index (RI) variations in the PDMS. Then, by employing a fiber optic interferometer with a high RI response, ultra-sensitive all-optical phase modulation can be realized. The experimental results demonstrate that the resonant wavelength shift of the modulator with MXene-incorporated PDMS is 126 times higher than that of a modulator with single MXene deposition. Also, a maximum wavelength sensitivity of 14.57 nm/mW is achieved (equivalent to a phase sensitivity of 0.33π/mW); this excellent modulation performance is a great improvement on that of a previously reported fiber-based all-optical phase modulator. Furthermore, PDMS is also employed as a packaging layer to strengthen the device structure and restrict the heat in an enclosed space, which improves the heat utilization efficiency. The proposed device shows great potential in optical communication, optical filtering, sensing, and modulation applications.

14.
iScience ; 26(7): 107202, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37485375

RESUMO

We sought to study the role of circulating cellular clusters (CCC) -such as circulating leukocyte clusters (CLCs), platelet-leukocyte aggregates (PLA), and platelet-erythrocyte aggregates (PEA)- in the immunothrombotic state induced by COVID-19. Forty-six blood samples from 37 COVID-19 patients and 12 samples from healthy controls were analyzed with imaging flow cytometry. Patients with COVID-19 had significantly higher levels of PEAs (p value<0.001) and PLAs (p value = 0.015) compared to healthy controls. Among COVID-19 patients, CLCs were correlated with thrombotic complications (p value = 0.016), vasopressor need (p value = 0.033), acute kidney injury (p value = 0.027), and pneumonia (p value = 0.036), whereas PEAs were associated with positive bacterial cultures (p value = 0.033). In predictive in silico simulations, CLCs were more likely to result in microcirculatory obstruction at low flow velocities (≤1 mm/s) and at higher branching angles. Further studies on the cellular component of hyperinflammatory prothrombotic states may lead to the identification of novel biomarkers and drug targets for inflammation-related thrombosis.

15.
Research (Wash D C) ; 6: 0205, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521328

RESUMO

Infectious diseases severely threaten public health and global biosafety. In addition to transmission through the air, pathogenic microorganisms have also been detected in environmental liquid samples, such as sewage water. Conventional biochemical detection methodologies are time-consuming and cost-ineffective, and their detection limits hinder early diagnosis. In the present study, ultrafine plasmonic fiber probes with a diameter of 125 µm are fabricated for clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas)-12a-mediated sensing of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Single-stranded DNA exposed on the fiber surface is trans-cleaved by the Cas12a enzyme to release gold nanoparticles that are immobilized onto the fiber surface, causing a sharp reduction in the surface plasmon resonance (SPR) wavelength. The proposed fiber probe is virus-specific with the limit of detection of ~2,300 copies/ml, and genomic copy numbers can be reflected as shifts in wavelengths. A total of 21 sewage water samples have been examined, and the data obtained are consistent with those of quantitative polymerase chain reaction (qPCR). In addition, the Omicron variant and its mutation sites have been fast detected using S gene-specific Cas12a. This study provides an accurate and convenient approach for the real-time surveillance of microbial contamination in sewage water.

16.
bioRxiv ; 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37398427

RESUMO

Being the largest lymphatic organ in the body, the spleen also constantly controls the quality of red blood cells (RBCs) in circulation through its two major filtration components, namely interendothelial slits (IES) and red pulp macrophages. In contrast to the extensive studies in understanding the filtration function of IES, there are relatively fewer works on investigating how the splenic macrophages retain the aged and diseased RBCs, i.e., RBCs in sickle cell disease (SCD). Herein, we perform a computational study informed by companion experiments to quantify the dynamics of RBCs captured and retained by the macrophages. We first calibrate the parameters in the computational model based on microfluidic experimental measurements for sickle RBCs under normoxia and hypoxia, as those parameters are not available in the literature. Next, we quantify the impact of a set of key factors that are expected to dictate the RBC retention by the macrophages in the spleen, namely, blood flow conditions, RBC aggregation, hematocrit, RBC morphology, and oxygen levels. Our simulation results show that hypoxic conditions could enhance the adhesion between the sickle RBCs and macrophages. This, in turn, increases the retention of RBCs by as much as five-fold, which could be a possible cause of RBC congestion in the spleen of patients with SCD. Our study on the impact of RBC aggregation illustrates a 'clustering effect', where multiple RBCs in one aggregate can make contact and adhere to the macrophages, leading to a higher retention rate than that resulting from RBC-macrophage pair interactions. Our simulations of sickle RBCs flowing past macrophages for a range of blood flow velocities indicate that the increased blood velocity could quickly attenuate the function of the red pulp macrophages on detaining aged or diseased RBCs, thereby providing a possible rationale for the slow blood flow in the open circulation of the spleen. Furthermore, we quantify the impact of RBC morphology on their tendency to be retained by the macrophages. We find that the sickle and granular-shaped RBCs are more likely to be filtered by macrophages in the spleen. This finding is consistent with the observation of low percentages of these two forms of sickle RBCs in the blood smear of SCD patients. Taken together, our experimental and simulation results aid in our quantitative understanding of the function of splenic macrophages in retaining the diseased RBCs and provide an opportunity to combine such knowledge with the current knowledge of the interaction between IES and traversing RBCs to apprehend the complete filtration function of the spleen in SCD.

17.
Nat Commun ; 14(1): 3767, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355646

RESUMO

Designing Pt-based electrocatalysts with high catalytic activity and CO tolerance is challenging but extremely desirable for alkaline hydrogen oxidation reaction. Herein we report the design of a series of single-atom lanthanide (La, Ce, Pr, Nd, and Lu)-embedded ultrasmall Pt nanoclusters for efficient alkaline hydrogen electro-oxidation catalysis based on vapor filling and spatially confined reduction/growth of metal species. Mechanism studies reveal that oxophilic single-atom lanthanide species in Pt nanoclusters can serve as the Lewis acid site for selective OH- adsorption and regulate the binding strength of intermediates on Pt sites, which promotes the kinetics of hydrogen oxidation and CO oxidation by accelerating the combination of OH- and *H/*CO in kinetics and thermodynamics, endowing the electrocatalyst with up to 14.3-times higher mass activity than commercial Pt/C and enhanced CO tolerance. This work may shed light on the design of metal nanocluster-based electrocatalysts for energy conversion.


Assuntos
Elementos da Série dos Lantanídeos , Metais Terras Raras , Platina , Oxirredução , Monóxido de Carbono , Hidrogênio
18.
Sensors (Basel) ; 23(11)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37300007

RESUMO

As one of the most well-established biocompatible transition metal nitrides, titanium nitride (TiN) has been widely applied for fiber waveguide coupling device applications. This study proposes a TiN-modified fiber optic interferometer. Benefiting from the unique properties of TiN, including ultrathin nanolayer, high refractive index, and broad-spectrum optical absorption, the refractive index (RI) response of the interferometer is greatly enhanced, which is desired all the time in the field of biosensing. The experimental results show that the deposited TiN nanoparticles (NPs) can enhance the evanescent field excitation and modulate the effective RI difference of the interferometer, which eventually results in the RI response enhancement. Besides, after incorporating the TiN with different concentrations, the resonant wavelength and the RI responses of the interferometer are enhanced to varying degrees. Benefitting from this advantage, the sensing performances, including sensitivity and measurement range, can be flexibly adapted based on different detection requirements. Since RI response can effectively reflect the detection ability of biosensors, the proposed TiN-sensitized fiber optic interferometer can be potentially applied for high-sensitive biosensing applications.


Assuntos
Refratometria , Estanho , Refratometria/métodos , Interferometria , Tecnologia de Fibra Óptica
19.
Biophys J ; 122(12): 2590-2604, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37231647

RESUMO

Erythrophagocytosis occurring in the spleen is a critical process for removing senescent and diseased red blood cells (RBCs) from the microcirculation. Although some progress has been made in understanding how the biological signaling pathways mediate the phagocytic processes, the role of the biophysical interaction between RBCs and macrophages, particularly under pathological conditions such as sickle cell disease, has not been adequately studied. Here, we combine computational simulations with microfluidic experiments to quantify RBC-macrophage adhesion dynamics under flow conditions comparable to those in the red pulp of the spleen. We also investigate the RBC-macrophage interaction under normoxic and hypoxic conditions. First, we calibrate key model parameters in the adhesion model using microfluidic experiments for normal and sickle RBCs under normoxia and hypoxia. We then study the adhesion dynamics between the RBC and the macrophage. Our simulation illustrates three typical adhesion states, each characterized by a distinct dynamic motion of the RBCs, namely firm adhesion, flipping adhesion, and no adhesion (either due to no contact with macrophages or detachment from the macrophages). We also track the number of bonds formed when RBCs and macrophages are in contact, as well as the contact area between the two interacting cells, providing mechanistic explanations for the three adhesion states observed in the simulations and microfluidic experiments. Furthermore, we quantify, for the first time to our knowledge, the adhesive forces between RBCs (normal and sickle) and macrophages under different oxygenated conditions. Our results show that the adhesive forces between normal cells and macrophages under normoxia are in the range of 33-58 pN and 53-92 pN for sickle cells under normoxia and 155-170 pN for sickle cells under hypoxia. Taken together, our microfluidic and simulation results improve our understanding of the biophysical interaction between RBCs and macrophages in sickle cell disease and provide a solid foundation for investigating the filtration function of the splenic macrophages under physiological and pathological conditions.


Assuntos
Anemia Falciforme , Humanos , Eritrócitos , Eritrócitos Anormais , Hipóxia/metabolismo , Hipóxia/patologia , Macrófagos , Adesão Celular
20.
Biophys J ; 122(8): 1445-1458, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36905122

RESUMO

Increased blood viscosity in type 2 diabetes mellitus (T2DM) is a risk factor for the development of insulin resistance and diabetes-related vascular complications; however, individuals with T2DM exhibit heterogeneous hemorheological properties, including cell deformation and aggregation. Using a multiscale red blood cell (RBC) model with key parameters derived from patient-specific data, we present a computational study of the rheological properties of blood from individual patients with T2DM. Specifically, one key model parameter, which determines the shear stiffness of the RBC membrane (µ) is informed by the high-shear-rate blood viscosity of patients with T2DM. At the same time, the other, which contributes to the strength of the RBC aggregation interaction (D0), is derived from the low-shear-rate blood viscosity of patients with T2DM. The T2DM RBC suspensions are simulated at different shear rates, and the predicted blood viscosity is compared with clinical laboratory-measured data. The results show that the blood viscosity obtained from clinical laboratories and computational simulations are in agreement at both low and high shear rates. These quantitative simulation results demonstrate that the patient-specific model has truly learned the rheological behavior of T2DM blood by unifying the mechanical and aggregation factors of the RBCs, which provides an effective way to extract quantitative predictions of the rheological properties of the blood of individual patients with T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Viscosidade Sanguínea , Eritrócitos , Agregação Eritrocítica , Reologia , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA