Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 13063, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844824

RESUMO

Colorectal cancer (CRC) is a prevalent global health issue, with 5-fluorouracil (5-FU) being a commonly used chemotherapeutic agent for its treatment. However, the efficacy of 5-FU is often hindered by drug tolerance. Sodium butyrate (NaB), a derivative of intestinal flora, has demonstrated anti-cancer properties both in vitro and in vivo through pro-apoptotic effects and has shown promise in improving outcomes when used in conjunction with traditional chemotherapy agents. This study seeks to evaluate the impact and potential mechanisms of NaB in combination with 5-FU on CRC. We employed a comprehensive set of assays, including CCK-8, EdU staining, Hoechst 33258 staining, flow cytometry, ROS assay, MMP assay, immunofluorescence, and mitophagy assay, to detect the effect of NaB on the biological function of CRC cells in vitro. Western blotting and immunohistochemistry were used to verify the above experimental results. The xenograft tumor model was established to evaluate the in vivo anti-CRC activity of NaB. Subsequently, 16S rRNA gene sequencing was used to analyze the intestinal flora. The findings of our study demonstrate that sodium butyrate (NaB) exerts inhibitory effects on tumor cell proliferation and promotes tumor cell apoptosis in vitro, while also impeding tumor progression in vivo through the enhancement of the mitophagy pathway. Furthermore, the combined treatment of NaB and 5-fluorouracil (5-FU) yielded superior therapeutic outcomes compared to monotherapy with either agent. Moreover, this combination therapy resulted in the specific enrichment of Bacteroides, LigiLactobacillus, butyric acid-producing bacteria, and acetic acid-producing bacteria in the intestinal microbiota. The improvement in the intestinal microbiota contributed to enhanced therapeutic outcomes and reduced the adverse effects of 5-FU. Taken together, these findings indicate that NaB, a histone acetylation inhibitor synthesized through intestinal flora fermentation, has the potential to significantly enhance the therapeutic efficacy of 5-FU in CRC treatment and improve the prognosis of CRC patients.


Assuntos
Ácido Butírico , Proliferação de Células , Neoplasias Colorretais , Fluoruracila , Microbioma Gastrointestinal , Transdução de Sinais , Ubiquitina-Proteína Ligases , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ácido Butírico/farmacologia , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Humanos , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Camundongos , Transdução de Sinais/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Apoptose/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral , Camundongos Nus , Sinergismo Farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
2.
J Inflamm Res ; 17: 2711-2730, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716300

RESUMO

Background: This study aims to elucidate the role of mitochondrial autophagy in metabolic dysfunction-associated steatohepatitis (MASH) by identifying and validating key mitophagy-related genes and diagnostic models with diagnostic potential. Methods: The gene expression profiles and clinical information of MASH patients and healthy controls were obtained from the Gene Expression Omnibus database (GEO). Limma and functional enrichment analysis were used to identify the mitophagy-related differentially expressed genes (mito-DEGs) in MASH patients. Machine learning models were used to select key mito-DEGs and evaluate their efficacy in the early diagnosis of MASH. The expression levels of the key mito-DEGs were validated using datasets and cell models. A nomogram was constructed to assess the risk of MASH progression based on the expression of the key mito-DEGs. The mitophagy-related molecular subtypes of MASH were evaluated. Results: Four mito-DEGs, namely MRAS, RAB7B, RETREG1, and TIGAR were identified. Among the machine learning models employed, the Support Vector Machine demonstrated the highest AUC value of 0.935, while the Light Gradient Boosting model exhibited the highest accuracy (0.9189), kappa (0.7204), and F1-score (0.9508) values. Based on these models, MRAS, RAB7B, and RETREG1 were selected for further analysis. The logistic regression model based on these genes could accurately predict MASH diagnosis. The nomogram model based on these DEGs exhibited excellent prediction performance. The expression levels of the three mito-DEGs were validated in the independent datasets and cell models, and the results were found to be consistent with the findings obtained through bioinformatics analysis. Furthermore, our findings revealed significant differences in gene expression patterns, immune characteristics, biological functions, and enrichment pathways between the mitophagy-related molecular subtypes of MASH. Subtype-specific small-molecule drugs were identified using the CMap database. Conclusion: Our research provides novel insights into the role of mitophagy in MASH and uncovers novel targets for predictive and personalized MASH treatments.

4.
Phytomedicine ; 128: 155316, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518635

RESUMO

BACKGROUND: Gastric cancer (GC) represents a significant health burden with dire prognostic implications upon metastasis and recurrence. Pterostilbene (PTE) has been proven to have a strong ability to inhibit proliferation and metastasis in other cancers, while whether PTE exhibits anti-GC activity and its potential mechanism remain unclear. PURPOSE: To explore the efficacy and potential mechanism of PTE in treating GC. METHODS: We employed a comprehensive set of assays, including CCK-8, EdU staining, colony formation, flow cytometry, cell migration, and invasion assays, to detect the effect of PTE on the biological function of GC cells in vitro. The xenograft tumor model was established to evaluate the in vivo anti-GC activity of PTE. Network pharmacology was employed to predict PTE's potential targets and pathways within GC. Subsequently, Western blotting, immunofluorescence, and immunohistochemistry were utilized to analyze protein levels related to the cell cycle, EMT, and the JAK2/STAT3 pathway. RESULTS: Our study demonstrated strong inhibitory effects of PTE on GC cells both in vitro and in vivo. In vitro, PTE significantly induced cell cycle arrest at G0/G1 and S phases and suppressed proliferation, migration, and invasion of GC cells. In vivo, PTE led to a dose-dependent reduction in tumor volume and weight. Importantly, PTE exhibited notable safety, leaving mouse weight, liver function, and kidney function unaffected. The involvement of the JAK2/STAT3 pathway in PTE's anti-GC effect was predicted utilizing network pharmacology. PTE suppressed JAK2 kinase activity by binding to the JH1 kinase structural domain and inhibited the downstream STAT3 signaling pathway. Western blotting confirmed PTE's inhibition of the JAK2/STAT3 pathway and EMT-associated protein levels. The anti-GC effect was partially reversed upon STAT3 activation, validating the pivotal role of the JAK2/STAT3 signaling pathway in PTE's activity. CONCLUSION: Our investigation validates the potent inhibitory effects of PTE on the proliferation and metastasis of GC cells. Importantly, we present novel evidence implicating the JAK2/STAT3 pathway as the key mechanism through which PTE exerts its anti-GC activity. These findings not only establish the basis for considering PTE as a promising lead compound for GC therapeutics but also contribute significantly to our comprehension of the intricate molecular mechanisms underlying its exceptional anti-cancer properties.


Assuntos
Movimento Celular , Proliferação de Células , Janus Quinase 2 , Camundongos Nus , Fator de Transcrição STAT3 , Transdução de Sinais , Estilbenos , Neoplasias Gástricas , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Estilbenos/farmacologia , Animais , Humanos , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos BALB C , Camundongos , Antineoplásicos Fitogênicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Farmacologia em Rede , Masculino , Metástase Neoplásica , Transição Epitelial-Mesenquimal/efeitos dos fármacos
5.
Polymers (Basel) ; 15(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38231997

RESUMO

Characterized by light weight and high strength, composites are widely used as protective materials in dynamic impact loading under extreme conditions, such as high strain rates. Therefore, based on the excellent tensile properties of continuous fiber and the good flexibility and toughness of the bionic spiral structure, this study uses a multi-material 3D printer to incorporate continuous fiber, and then modifies the G-CODE file to control the printing path to achieve the production of a continuous fiber-reinforced Polylactic Acid composite helicoidal (spiral angle 60°) structure (COF-HP). Dynamic behavior under high-strain-rate impact experiments have been conducted using the Split Hopkinson Pressure Bar (SHPB). Stress-strain curves, impact energy curves and high-speed camera photographs with different strain rates at 680 s-1 and 890 s-1 have been analyzed to explore the dynamic process and illustrate the damage evolution. In addition, some detailed simulation models considering the incorporation of continuous optical fiber (COF) and different strain rates have been established and verified for deeper investigations. The results show that the COF does enhance the impact resistance of the laminates. When the porosity is reduced, the maximum stress of the continuous fiber-reinforced composite material is 4~7% higher than that of the pure PLA material. Our findings here expand the application of COF and provide a new method for designing protective materials, which have broad application prospects in the aerospace and automotive industries.

6.
Polymers (Basel) ; 14(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35406313

RESUMO

Bioinspired composites, capable of tailoring mechanical properties by the strategy of making full use of their advantages and bypassing their drawbacks, are vital for numerous engineering applications such as lightweight ultrahigh-strength, enhanced toughness, improved low-/high- velocity impact resistance, wave filtering, and energy harvesting. Helicoidal composites are examples of them. However, how to optimize the geometric structure to maximize the low-velocity impact resistance of helicoidal composites has been ignored, which is vital to the lightweight and high strength for aerospace, defense, ship, bridge, dam, vessel, and textile industries. Here, we combined experiments and numerical simulations to report the dynamic response of helicoidal composites subjected under low-velocity impact (0-10 m/s). Our helicoidal structures, inspired by the Stomatopod Dactyl club, are fabricated using polylactic acid (PLA) by FFF in a single-phase way. The helicoidal strategy aims to exploit, to a maximum extent, the axial tensile strength of filaments and simultaneously make up the shortage of inter-filament contact strength. We demonstrate experimentally that the low-velocity impact resistance has been enhanced efficiently as the helicoidal angle varies, and that the 15° helicoidal plate is better than others, which has also been confirmed by the numerical simulations. The findings reported here provide a new routine to design composites systems with enhanced impact resistance, offering a method to improve impact performance and expand the application of 3D printing.

7.
Clin Chim Acta ; 531: 62-67, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35292254

RESUMO

BACKGROUND: Visinin-like protein 1 (VILIP-1) appears as a biomarker of neuronal injury. We investigated the correlation of serum VILIP-1 concentrations with severity, early neurologic deterioration (END) and functional outcome of intracerebral hemorrhage (ICH). METHODS: In this prospective and observational study, serum VILIP-1 concentrations were quantified in 106 patients with basal ganglia hemorrhage. Univariate and multivariable logistic regression analyses were used to analyze the relationship between serum VILIP-1 concentrations and END plus worse prognosis (modified Rankin Scale score of 3 or greater) at post-injury 3 months. RESULTS: Serum VILIP-1 concentrations of patients were closely correlated with hematoma volume and National Institutes of Health Stroke Scale score. Serum VILIP-1 concentrations were substantially elevated in patients with END or worse 3-month prognosis, as compared to other remainders. Also, serum VILIP-1 concentrations were independently associated with END and worse 3-month prognosis. Under ROC curve analysis, serum VILIP-1 concentrations exhibited marked accuracy for distinguishing patients with the development of END or worse 3-month prognosis. Its predictive ability was in the range of hematoma volume and National Institutes of Health Stroke Scale score. CONCLUSIONS: Serum VILIP-1 may be a good biomarker for assessing hemorrhagic severity and clinical outcomes after ICH.


Assuntos
Hemorragia dos Gânglios da Base , Acidente Vascular Cerebral , Hemorragia dos Gânglios da Base/diagnóstico , Biomarcadores , Hemorragia Cerebral/diagnóstico , Hematoma , Humanos , Neurocalcina , Prognóstico , Estudos Prospectivos
8.
Neuropsychiatr Dis Treat ; 18: 47-55, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35035218

RESUMO

OBJECTIVE: Complement C1q is implicated in neuroinflammation. We intended to discern the relationship between serum C1q levels and severity in addition to prognosis following traumatic brain injury (TBI). METHODS: In this prospective, observational study, serum C1q levels were quantified in 188 TBI patients and 188 healthy controls. Glasgow coma scale (GCS) and Rotterdam computed tomography (CT) classification were used as clinical and radiological indicators of severity. Patients with extended Glasgow outcome scale (GOSE) score of 1-4 at 6 months after trauma were considered to have a poor outcome. Multiple logistic regression model was built to ascertain the independent association of serum C1q levels with 6-month poor outcome. Receiver operating characteristic (ROC) curve was configured for analysis of prognostic capability with respect to serum C1q levels. RESULTS: TBI patients exhibited substantially higher serum C1q levels than controls (median, 223.9 mg/l versus 75.4 mg/l). Serum C1q levels of patients were tightly correlated with GCS score (r = -0.671), Rotterdam CT classification (r = 0.604) and GOSE score (r = -0.581). An area under the ROC curve was yielded of 0.793 (95% confidence interval = 0.728-0.849), and serum C1q levels above 345.5 mg/l discriminated the risk of 6-month poor outcome with 59.6% sensitivity and 92.6% specificity. Serum C1q levels above 345.5 mg/l retained as an independent predictor for 6-month poor outcome with odds ratio of 4.922 (95% confidence interval = 1.552-15.606; P = 0.017). CONCLUSION: Elevated serum C1q levels are closely correlated with traumatic severity and independently predicted the risk of long-term poor prognosis after TBI.

9.
Front Pharmacol ; 12: 708093, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512341

RESUMO

Introduction: The gastrointestinal malignancy, gastric cancer (GC), has a high incidence worldwide. Cisplatin is a traditional chemotherapeutic drug that is generally applied to treat cancer; however, drug tolerance affects its efficacy. Sodium butyrate is an intestinal flora derivative that has general anti-cancer effects in vitro and in vivo via pro-apoptosis effects and can improve prognosis in combination with traditional chemotherapy drugs. The present study aimed to assess the effect of sodium butyrate combined with cisplatin on GC. Methods: A Cell Counting Kit-8 assay was used to assess the viability of GC cells in vitro. Hoechst 33,258 staining and Annexin V-Phycoerythrin/7-Aminoactinomycin D were used to qualitatively and quantitatively detect apoptosis in GC cells. Intracellular reactive oxygen species (ROS) measurement and a mitochondrial membrane potential (MMP) assay kit were used to qualitatively and quantitatively reflect the function of mitochondria in GC cells. Western blotting was used to verify the above experimental results. A nude mouse xenograft tumor model was used to evaluate the anti-tumor efficacity of sodium and cisplatin butyrate in vivo. Results: Cisplatin combined with sodium butyrate increased the apoptosis of GC cells. In the nude mouse xenograft tumor model, sodium butyrate in combination with cisplatin markedly inhibited the growth of the tumor more effectively than either single agent. The combination of sodium butyrate and cisplatin increased the intracellular ROS, decreased the MMP, and suppressed the invasion and migration abilities of GC cells. Western blotting verified that the combination of sodium butyrate and cisplatin remarkably enhanced the levels of mitochondrial apoptosis-related pathway proteins. Conclusion: Sodium butyrate, a histone acetylation inhibitor produced by intestinal flora fermentation, combined with cisplatin enhanced the apoptosis of GC cells through the mitochondrial apoptosis-related pathway, which might be considered as a therapeutic option for GC.

10.
Sensors (Basel) ; 21(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494493

RESUMO

The lensless on-chip microscope is an emerging technology in the recent decade that can realize the imaging and analysis of biological samples with a wide field-of-view without huge optical devices and any lenses. Because of its small size, low cost, and being easy to hold and operate, it can be used as an alternative tool for large microscopes in resource-poor or remote areas, which is of great significance for the diagnosis, treatment, and prevention of diseases. To improve the low-resolution characteristics of the existing lensless shadow imaging systems and to meet the high-resolution needs of point-of-care testing, here, we propose a high-precision on-chip microscope based on in-line holographic technology. We demonstrated the ability of the iterative phase recovery algorithm to recover sample information and evaluated it with image quality evaluation algorithms with or without reference. The results showed that the resolution of the holographic image after iterative phase recovery is 1.41 times that of traditional shadow imaging. Moreover, we used machine learning tools to identify and count the mixed samples of mouse ascites tumor cells and micro-particles that were iterative phase recovered. The results showed that the on-chip cell counter had high-precision counting characteristics as compared with manual counting of the microscope reference image. Therefore, the proposed high-precision lensless microscope on a chip based on in-line holographic imaging provides one promising solution for future point-of-care testing (POCT).

11.
Analyst ; 143(22): 5339-5351, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30327808

RESUMO

The traditional analytical biosensor instruments are relatively bulky, expensive, and not easy to handle, thus their applications are largely limited in resource-limited settings. The recent development of microfluidic lab-on-a-chip (LOC) technology has provided a possible solution to miniaturize the conventional biosensing system, yet other accessory devices to detect, readout, analyze, transfer, and display results are still required. With the rapid development, mass production, and pervasive distribution of smartphones in recent years, they have provided people with portable, cost-effective, and easy-to-operate platforms to build analytical biosensors for point-of-care (POC) applications and mobile health. Based on the common analytical methods, this paper reviews the recent development of four types of smartphone based analytical biosensory systems at the POC, i.e., smartphone-based microscopic imaging, colorimetric, electrochemical, and electrochemiluminescence biosensor. The different bio-sensing strategies and analytical performance together with future perspectives are discussed.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Dispositivos Lab-On-A-Chip , Smartphone , Colorimetria/instrumentação , Colorimetria/métodos , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Humanos , Medições Luminescentes/instrumentação , Medições Luminescentes/métodos , Microscopia/instrumentação , Microscopia/métodos , Sistemas Automatizados de Assistência Junto ao Leito
12.
Materials (Basel) ; 11(5)2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29735957

RESUMO

Concretes with engineered thermal expansion coefficients, capable of avoiding failure or irreversible destruction of structures or devices, are important for civil engineering applications, such as dams, bridges, and buildings. In natural materials, thermal expansion usually cannot be easily regulated and an extremely low thermal expansion coefficient (TEC) is still uncommon. Here we propose a novel cementitious composite, doped with ZrW2O8, showing a wide range of tunable thermal expansion coefficients, from 8.65 × 10-6 °C-1 to 2.48 × 10-6 °C-1. Macro-scale experiments are implemented to quantify the evolution of the thermal expansion coefficients, compressive and flexural strength over a wide range of temperature. Scanning Electron Microscope (SEM) imaging was conducted to quantify the specimens' microstructural characteristics including pores ratio and size. It is shown that the TEC of the proposed composites depends on the proportion of ZrW2O8 and the ambient curing temperature. Macro-scale experimental results and microstructures have a good agreement. The TEC and strength gradually decrease as ZrW2O8 increases from 0% to 20%, subsequently fluctuates until 60%. The findings reported here provide a new routine to design cementitious composites with tunable thermal expansion for a wide range of engineering applications.

13.
Zhongguo Zhong Yao Za Zhi ; 39(21): 4205-10, 2014 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-25775794

RESUMO

Coptis chinensis is widely used as Chinese medicine herbs and serious soil problems occur after continual cultivation of this medicinal plant. In the preset experiment, fibrous root extract of C. chinensis (REC) was added into soil to study the effect of REC on microbes and enzyme activity in soil. The results showed that both bacteria and actinomycetes decreased by about 2 times in contrast to fungi, which increased by about 3 folds. Phosphorus bacteria, potassium bacteria, azotobacter, ammonia bacteria, and nitrifying bacteria were also reduced significantly by REC, suggesting the inhibition of nitrogen biofixation and supply, mobilization of phosphorus and potassium, ad plant growth promotion as REC added into soil. There were multiple influences of REC on soil enzyme activities. Invertase activity was stimulated, while urease was inhibited and dehydrogenase unchanged by REC, indicating the interference of biochemical reactions in soil. In addition, type and total content of phosphorus lipid fatty acids (PLFAs) , the signature of microbes, decreased while the ratio of bacterium to fungus PLFAs increased as REC increased in soil, which suggested that fungi increased relatively with bacteria decreased thereby leading to easy occurrence of crop fungus diseases following cultivation of C. chinensis. The decrease in diversity and evenness indexes of microbial community in soil by REC indicated soil ecosystem deterioration and reduction of microbial groups and densities in soil. Therefore, allelopathic chemicals released from the roots of C. chinensis could change microbial community structure and resulted in serious soil problems by continual cropping of this medicinal plant.


Assuntos
Coptis , Extratos Vegetais/farmacologia , Microbiologia do Solo , Solo/química , Ecossistema , Raízes de Plantas
14.
Huan Jing Ke Xue ; 35(10): 3862-8, 2014 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-25693394

RESUMO

Soil acidification, aluminum (Al3+) toxicity and nutrient deficiency could be some of the most important reasons for the decline and death of forests in tropical and subtropical areas. Ectomycorrhizal fungi for Al3+ resistance and nutrient mobilization are beneficial for preventing forests against Al3+ toxicity and increasing forest productivity. Therefore, Suillus luteus (SI 13), Pisolithus tinctorius (Pt 715) and Suillus subluteus (Ss 00) were grown in liquid culture medium with soil as the sole K source under Al3+ stress to study the fungal growth, organic acid and proton efflux, and potassium (K) unitization. The result indicated that the fungal growth, organic acid and proton efflux, and nutrient uptake, including nitrogen (N), phosphorus (P) and potassium (K), were regulated by Al3+ concentration in culture solutions. They increased with increasing Al3+ at low concentration and after reaching a peak, they started to decrease. Fungal strain with high resistance to Al3+ also showed higher Al3+ concentration at the peak than those with low ability. Al3+ concentration at the peak of fungal biomass and N uptake by Pt 715 was four folds or twice of Ss 00 and SI 13, respectively. The uptake of P and K and efflux of organic acids and protons by Pt 715 were also higher than Ss 00 and Sl 13. All three fungal strains could utilize structural K in soil minerals and the utilization rate reached 2.10% for Pt 715, 1.43% for Ss 00 and 1.17% for Sl 13, respectively, which could be related to the types and amount of organic acids and protons.


Assuntos
Alumínio/química , Micorrizas/efeitos dos fármacos , Potássio/química , Microbiologia do Solo , Solo/química , Agaricales/efeitos dos fármacos , Basidiomycota/efeitos dos fármacos , Biomassa , Nitrogênio/química , Fósforo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA