Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Front Bioeng Biotechnol ; 12: 1375277, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515620

RESUMO

Introduction: Stroke is the second leading cause of death globally and a primary factor contributing to disability. Unilateral limb motor impairment caused by stroke is the most common scenario. The bilateral movement pattern plays a crucial role in assisting stroke survivors on the affected side to relearn lost skills. However, motion compensation often lead to decreased coordination between the limbs on both sides. Furthermore, muscle fatigue resulting from imbalanced force exertion on both sides of the limbs can also impact the rehabilitation outcomes. Method: In this study, an assessment method based on muscle synergy indicators was proposed to objectively quantify the impact of motion compensation issues on rehabilitation outcomes. Muscle synergy describes the body's neuromuscular control mechanism, representing the coordinated activation of multiple muscles during movement. 8 post-stroke hemiplegia patients and 8 healthy subjects participated in this study. During hand-cycling tasks with different resistance levels, surface electromyography signals were synchronously collected from these participants before and after fatigue. Additionally, a simulated compensation experiment was set up for healthy participants to mimic various hemiparetic states observed in patients. Results and discussion: Synergy symmetry and synergy fusion were chosen as potential indicators for assessing motion compensation. The experimental results indicate significant differences in synergy symmetry and fusion levels between the healthy control group and the patient group (p ≤ 0.05), as well as between the healthy control group and the compensation group. Moreover, the analysis across different resistance levels showed no significant variations in the assessed indicators (p > 0.05), suggesting the utility of synergy symmetry and fusion indicators for the quantitative evaluation of compensation behaviors. Although muscle fatigue did not significantly alter the symmetry and fusion levels of bilateral synergies (p > 0.05), it did reduce the synergy repeatability across adjacent movement cycles, compromising movement stability and hindering patient recovery. Based on synergy symmetry and fusion indicators, the degree of bilateral motion compensation in patients can be quantitatively assessed, providing personalized recommendations for rehabilitation training and enhancing its effectiveness.

2.
Biochem Genet ; 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38071681

RESUMO

Ovarian cancer (OC) is a major gynecological malignancy with an annually increasing morbidity that poses a significant threat to the health of women worldwide. Most OC patients are diagnosed at an advanced stage. It is an urgent task to search for biomarkers for the diagnosis and treatment of OC. The lncRNA HCP5 (HCP5) was recently identified as an oncogene in several malignant tumors. However, the function of HCP5 in OC has rarely been reported. Herein, the levels of HCP5 and PTBP1 were found to be markedly increased in malignant OC tumor tissues and OC cell lines. In HCP5-silenced SKOV-3 and HEY cells, cell viability was markedly decreased, and the apoptosis rate was significantly increased, with more cells exhibiting G0/G1 arrest and increased expression of cleaved caspase-3 and cleaved caspase-9. Furthermore, the number of migrated cells, number of invaded cells, and migration distance were notably decreased by the knockdown of HCP5 in SKOV-3 cells and HEY cells. In the xenograft model established with SKOV-3 cells, the number of lung metastases, tumor growth, and Ki67 expression in tumor tissues were markedly decreased by the knockdown of HCP5, accompanied by an increased percentage of TUNEL-positive cells. HCP5 was found to be localized in the nucleus, and the interaction between HCP5 and PTBP1 was verified by RNA pull-down and RNA immunoprecipitation assays. Furthermore, in HCP5-overexpressing OC cells, the impacts of HCP5 on cell proliferation and apoptosis were significantly attenuated by the knockdown of PTBP1. Collectively, these results indicate that HCP5 facilitates the progression of OC by interacting with the PTBP1 protein.

3.
Quant Imaging Med Surg ; 13(10): 6503-6516, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37869346

RESUMO

Background: The incidence of Parkinson disease (PD) has been increasing each year. The development of new magnetic resonance imaging (MRI) technology can help understand its pathogenesis and identify more effective imaging-based biological indicators. Methods: The clinical and MRI imaging data of 40 patients with PD and 40 healthy controls were analyzed. All participants underwent susceptibility-weighted imaging (SWI), neuromelanin-sensitive magnetic resonance imaging (NM-MRI), and T2*mapping sequence examination. The diagnostic value of single and combined multiparameter indicators was analyzed using the receiver operating characteristic curve. Results: Compared with the healthy control group, the PD group showed significant differences in the disappearance of bilateral "swallow tail sign", the distribution volume of melanocytes in the substantia nigra and the smaller volume in the bilateral substantia nigra, the maximum signal of the locus coeruleus and the smaller and average volume in the bilateral substantia nigra, and the values of T2* and R2* in the bilateral substantia nigra (P<0.01). The maximum and smaller value and the average value of the bilateral locus coeruleus signal were negatively correlated with the disease course duration (P<0.05), and the smaller distribution volume of the melanin neurons in the bilateral substantia nigra was negatively correlated with Hoehn and Yahr (H-Y) grade (P<0.05). In the joint diagnosis with multiple indicators, some composite parameters were found to be negatively correlated with H-Y grading (P<0.05), while others were negatively correlated with disease course duration (P<0.05). Joint use of multiple parameter indicators greatly improved diagnostic efficacy [area under the curve (AUC) =0.958]. Conclusions: The distribution volume of melanin in substantia nigra and the maximum value of locus coeruleus signal may be the biological imaging indicators for the early diagnosis, severity, and follow-up evaluation of PD. Compared with a single indicator, composite indicators used in combination with multiple techniques have a significantly better diagnostic efficacy for PD.

4.
Environ Sci Technol ; 57(42): 15990-15998, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37827494

RESUMO

One strategy for mitigating the indoor transmission of airborne pathogens, including the SARS-CoV-2 virus, is irradiation by germicidal UV light (GUV). A particularly promising approach is 222 nm light from KrCl excimer lamps (GUV222); this inactivates airborne pathogens and is thought to be relatively safe for human skin and eye exposure. However, the impact of GUV222 on the composition of indoor air has received little experimental study. Here, we conduct laboratory experiments in a 150 L Teflon chamber to examine the formation of secondary species by GUV222. We show that GUV222 generates ozone (O3) and hydroxyl radicals (OH), both of which can react with volatile organic compounds to form oxidized volatile organic compounds and secondary organic aerosol particles. Results are consistent with a box model based on the known photochemistry. We use this model to simulate GUV222 irradiation under more realistic indoor air scenarios and demonstrate that under some conditions, GUV222 irradiation can lead to levels of O3, OH, and secondary organic products that are substantially elevated relative to normal indoor conditions. The results suggest that GUV222 should be used at low intensities and in concert with ventilation, decreasing levels of airborne pathogens while mitigating the formation of air pollutants.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Ozônio , Compostos Orgânicos Voláteis , Humanos , Poluição do Ar em Ambientes Fechados/análise , Aerossóis e Gotículas Respiratórios , Ozônio/análise
5.
Environ Pollut ; 335: 122288, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37544180

RESUMO

Dust storms are one of the largest sources of non-exhaust emissions in China, which can adversely affect air quality and human health during long-distance transportation. To study the influence of dust storms on aerosol particle composition, samples of fine aerosol (PM2.5) were collected before, during, and after the severe dust storm episodes in a coastal city of North China. Then the water-soluble inorganic ions in the filters were analyzed. The results showed that the chemical composition varied significantly in different sampling periods. Before the dust storm periods (Phase 1), the weather was characterized by high relative humidity. NO3- was the main water-soluble inorganic ion, accounting for about 1/3 of the total mass of PM2.5, which is very different from the situation a few years ago when sulfate was the dominant. The results indicated that the chemical composition of the atmosphere in China has changed significantly after the implementation of strict air pollution control measures. During the severe dust storm periods (within a few hours after the dust invasion, Phase 2), the proportion of Ca2+ in PM2.5 was high; the sulfate formation was limited due to adiabatic air mass affected by the cold front, and the sulfate content might be mainly from desert soil. However, a small amount of nitrate can be formed during their long-distance transportation. After the dust storm periods (Phase 3), dust plums and local polluted air mass mixed well. The proportion of secondary inorganic ions increased, and nitrate formation was still the main. The changes in the chemical composition from a few years ago during Phase 1 and the sharp changes in different water-soluble inorganic ions during different Phases should be carefully considered to evaluate their implications for air quality and human health.


Assuntos
Poluentes Atmosféricos , Nitratos , Humanos , Aerossóis/análise , Poluentes Atmosféricos/análise , China , Poeira/análise , Monitoramento Ambiental/métodos , Nitratos/análise , Material Particulado/análise , Sulfatos/análise , Óxidos de Enxofre , Água/química
6.
Adv Mater ; 35(35): e2210732, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37172955

RESUMO

Missed or residual tumor burden results in high risk for bladder cancer relapse. However, existing fluorescent probes cannot meet the clinical needs because of inevitable photobleaching properties. Performance can be improved by maintaining intensive and sustained fluorescence signals via resistance to intraoperative saline flushing and intrinsic fluorescent decay, providing surgeons with sufficiently clear and high-contrast surgical fields, avoiding residual tumors or missed diagnosis. This study designs and synthesizes a photostable cascade-activatable peptide, a target reaction-induced aggregation peptide (TRAP) system, which can construct polypeptide-based nanofibers in situ on the cell membrane to achieve long-term and stable imaging of bladder cancer. The probe has two parts: a target peptide (TP) targets CD44v6 to recognize bladder cancer cells, and a reaction-induced aggregation peptide (RAP) is introduced, which effectively reacts with the TP via a click reaction to enhance the hydrophobicity of the whole molecule, assembling into nanofibers and further nanonetworks. Accordingly, probe retention on the cell membrane is prolonged, and photostability is significantly improved. Finally, the TRAP system is successfully employed in the high-performance identification of human bladder cancer in ex vivo bladder tumor tissues. This cascade-activatable peptide molecular probe based on the TRAP system enables efficient and stable imaging of bladder cancer.


Assuntos
Nanofibras , Neoplasias da Bexiga Urinária , Humanos , Recidiva Local de Neoplasia , Peptídeos/química , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Membrana Celular/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-36901254

RESUMO

Design rainfall is the basis for deriving design floods in areas where rainfall data are lacking and has a significant impact on the construction of water engineering facilities and municipal engineering designs. The Chicago rainfall pattern method has great applicability for urban short-duration design rainfall. In order to analyze the influence of design storm rainfall patterns on urban flooding, numerical models of hydrological and hydrodynamic processes were applied to simulate design rainfall with different recurrence periods and different rain peaks and were also used to compare and analyze the total amount of water accumulation and inundation extent by taking the central city of Zhoukou as an example. The results show that when the design rainfall recurrence period is less than 20 years, the total volume and inundation extent of waterlogging in design rainfall with a smaller peak ratio is larger. When the return period is greater than 20 years, the pattern is reversed. However, as the return period grows, the difference in peak inundation volume due to different peak rainfall amounts decreases. This study has certain guiding significance for urban flood forecasting and early warning efforts.


Assuntos
Inundações , Modelos Teóricos , Chicago , Urbanização , Chuva , Cidades
8.
Opt Express ; 31(4): 6590-6600, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823911

RESUMO

A dual-peak long period fiber grating (DP-LPFG) sensor functionalized by polypyrrole-chitosan composite was proposed for sensitive detection of Cu2+ ions in aqueous solution. The nitrogen atom on the polypyrrole ring and the amino group on the chitosan chain in the complex matrix can chelate the Cu2+ ions. Thus, the refractive index of the overlay changed and further modulated the transmission spectrum of DP-LPFG. After special design, the double peaks can move in opposite directions with the increase of Cu2+ ion concentration, thereby greatly improving detection sensitivity. The linear sensitivity of the fabricated sensor was measured to be 9.12 and 2.14 nm/ppm (0.61 and 0.14 nm/µM) for concentrations of 0.1-0.5 (1.5 µM-7.5 µM) and 0.5-2 ppm (7.5 µM-30 µM), respectively. In addition, the Langmuir isothermal model was used to evaluate the overall response of the sensor to Cu2+ ions quantitatively, and the detection limit was determined to be 0.05 ppb (0.75 nM). This ingenious sensor offers a new solution for sensitive detection of heavy metal ions in environmental water.

9.
Artigo em Inglês | MEDLINE | ID: mdl-36673799

RESUMO

At present, urban flood risk analysis and forecasting and early warning mainly use numerical models for simulation and analysis, which are more accurate and can reflect urban flood risk well. However, the calculation speed of numerical models is slow and it is difficult to meet the needs of daily flood control and emergency. How to use artificial intelligence technology to quickly predict urban flooding is a key concern and a problem that needs to be solved. Therefore, this paper combines a numerical model with good computational accuracy and an LSTM artificial neural network model with high computational efficiency to propose a new method for fast prediction of urban flooding risk. The method uses the simulation results of the numerical model of urban flooding as the data driver to construct the LSTM neural network prediction model of each waterlogging point. The results show that the method has a high prediction accuracy and fast calculation speed, which can meet the needs of daily flood control and emergency response, and provides a new idea for the application of artificial intelligence technology in the direction of flood prevention and mitigation.


Assuntos
Inteligência Artificial , Inundações , Redes Neurais de Computação , Previsões , Medição de Risco
10.
Opt Express ; 30(19): 33817-33825, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36242408

RESUMO

A sensitive ammonia sensor based on long-period fiber grating (LPFG) is designed and manufactured for the detection of ammonia concentration in water. Femtosecond laser direct writing technology is used to write LPFGs on standard single-mode silica fiber. A thin layer doped with basic dyes is coated on the optical fiber for sensing by using the sol-gel method. The thicknesses of sol-gel layers, which play a key role in the sensitivity of the LPFG sensor, were carefully studied. Experimental results show that LPFG with a functional layer of ∼340 nm has the best sensing performance, and the detection limit is 0.08 ppm. The response time of the sensor is less than one minute, and the sensor has good repeatability with a short recovery time. Compared with other organic molecules and ions in water, the proposed LPFG sensor has not only good reusability, but also selectivity for the detection of ammonia.

11.
Sci Total Environ ; 838(Pt 1): 155989, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35580670

RESUMO

Airborne microplastics (MPs) pollution is an environmental problem of increasing concern, due to the ubiquity, persistence and potential toxicity of plastics in the atmosphere. In recent years, most studies on MPs have focused on aquatic and sedimentary environments, but little research has been done on MPs in the urban atmosphere. In this study, a total of ten dustfall samples were collected in a transect from north to south across urban Beijing. The compositions, morphologies, and sizes of the MPs in these dustfall samples were determined by means of Laser Direct Infrared (LDIR) imaging and Field Emission Scanning Electron Microscopy (FESEM). The number concentrations of MPs in the Beijing dustfall samples show an average of 123.6 items/g. The MPs concentrations show different patterns in the central, southern, and northern zones of Beijing. The number concentration of MPs was the highest in the central zone (224.76 items/g), as compared with the southern zone (170.55 items/g), and the northern zone (24.42 items/g). The LDIR analysis revealed nine compositional types of MPs, including Polypropylene (PP), Polyamide (PA), Polystyrene (PS), Polyethylene (PE), Polyethylene Terephthalate (PET), Silicone, Polycarbonate (PC), Polyurethane (PU) and Polyvinylchloride (PVC), among which PP was overall dominant. The PP dominates the MPs in the central zone (76.3%), and the PA dominates the MPs in the southern zone (55.86%), while the northern zone had a diverse combination of MPs types. The morphological types of the individual MPs particle include fragments, pellets, and fibers, among which fragments are dominant (70.9%). FESEM images show the presence of aged MPs in the Beijing atmosphere, which could pose a yet unquantified health risk to Beijing's residents. The average size of the MPs in the Beijing samples is 66.62 µm. Our study revealed that the numbers of fibrous MPs increase with the decrease in size. This pollution therefore needs to be carefully monitored, and methods of decreasing the sources and mitigations developed.


Assuntos
Microplásticos , Poluentes Químicos da Água , Pequim , China , Monitoramento Ambiental , Plásticos , Polipropilenos/análise , Poluentes Químicos da Água/análise
12.
IEEE Trans Image Process ; 31: 2245-2256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35044913

RESUMO

Dynamic scene deblurring is a challenging problem as it is difficult to be modeled mathematically. Benefiting from the deep convolutional neural networks, this problem has been significantly advanced by the end-to-end network architectures. However, the success of these methods is mainly due to simply stacking network layers. In addition, the methods based on the end-to-end network architectures usually estimate latent images in a regression way which does not preserve the structural details. In this paper, we propose an exemplar-based method to solve dynamic scene deblurring problem. To explore the properties of the exemplars, we propose a siamese encoder network and a shallow encoder network to respectively extract input features and exemplar features and then develop a rank module to explore useful features for better blur removing, where the rank modules are applied to the last three layers of encoder, respectively. The proposed method can be further extended to the way of multi-scale, which enables to recover more texture from the exemplar. Extensive experiments show that our method achieves significant improvements in both quantitative and qualitative evaluations.

13.
Sci Total Environ ; 814: 152774, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34986423

RESUMO

Air pollution is a major environmental health challenge in megacities, and as such a Comprehensive Action Plan (CAP) was issued in 2017 for Beijing, the capital city of China. Here we investigated the size-segregated airborne particles collected after the implementation of the CAP, intending to understand the change of oxidative potential and water-soluble heavy metal (WSHM) levels in 'haze' and 'non-haze' days. The DNA damage and the levels of WSHM were analyzed by Plasmid Scission Assay (PSA) and High-Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS) techniques. The PM mass concentration was higher in the fine particle size (0.43-2.1 µm) during haze days, except for the samples affected by mineral dust. The particle-induced DNA damage caused by fine sized particles (0.43-2.1 µm) exceeded that caused by the coarse sized particles (4.7-10 µm). The DNA damage from haze day particles significantly exceeded those collected on non-haze days. Prior to the instigation of the CAP, the highest value of DNA damage decreased, and DNA damage was seen in the finer size (0.43-1.1 µm). The Pearson correlation coefficient between the concentrations of water-soluble Pb, Cr, Cd and Zn were positively correlated with DNA damage, suggesting that these WSHM had significant oxidative potential. The mass concentrations of water-soluble trace elements (WSTE) and individual heavy metals were enriched in the finer particles between 0.43 µm to 1.1 µm, implying that smaller sized particles posed higher health risks. In contrast, the significant reduction in the mass concentration of water-soluble Cd and Zn, and the decrease of the maximum and average values of DNA damage after the CAP, demonstrated its effectiveness in restricting coal-burning emissions. These results have demonstrated that the Beijing CAP policy has been successful in reducing the toxicity of 'respirable' ambient particles.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Estresse Oxidativo , Tamanho da Partícula , Material Particulado/análise , Água
14.
Sci Total Environ ; 803: 149980, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34525764

RESUMO

Dust storm particles have been one of the important contributors to global aerosol loading, affecting human health and climate system. Beijing, a megapolitan city, experienced two severe dust storms in spring of 2015, with maximum hourly-mean PM10 mass concentrations exceeding 1000 µg/m3. The first dust storm (Dust 1) was from east area of Gobi Desert about 850 km in the north of Beijing and the second (Dust 2) was from west area of Gobi Desert about 1500 km in the northwest of Beijing. Morphologies and elemental compositions of dust particles were identified using high-resolution electron microscopy. The statistical analysis showed that the number fractions of mineral dust particles during the two dust storm episodes were 85.3% and 95.4%, respectively. Clay minerals were the most abundant among mineral particles, with a number fraction larger than 50%, followed by quartz particles (17.3% and 14.8%) and feldspar. Feldspar and carbonate particles accounted for 14.8% and 3.4% of mineral particles in Dust 1, and 9.9% and 13.6% in Dust 2, with the difference due to the different source areas. When the dust storms directly migrated to Beijing, the occurrence of S-containing mineral particles and the relative weight ratio of S in individual mineral particles were extremely low, indicating limited production of sulfate on the dust-storm particles in the atmosphere, regardless of the differences of source areas, migration paths, and mineralogical components. After the peaks of dust storms passed, the occurrence of S on the mineral particles were much higher, although the relative weight ratios of S in the mineral particles was still very small. This result suggests that most of the mineral particles underwent heterogeneous reactions, but the reaction rates were low.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Pequim , Poeira/análise , Monitoramento Ambiental , Humanos , Minerais/análise , Tamanho da Partícula
15.
Biosens Bioelectron ; 199: 113860, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890885

RESUMO

The rapid and reliable detection of bacteria plays an important role in clinical and veterinary practice. A stable, label free, compact, and sensitive long-period fiber grating (LPFG) sensor based on egg yolk antibody (IgY) was proposed for the detection of Staphylococcus aureus (S. aureus). LPFG was fabricated with laser writing technology, and specific IgY was further immobilized on the grating region and then combined with the corresponding bacteria. S. aureus was detected by tracking the change of resonance wavelength in the LPFG transmission spectrum caused by bacteria-antibody interaction induced by the increase of biological cover thickness and density after the immune reaction. The testing results showed that the proposed sensor was selective and sensitive to S. aureus measurement, and the detection limit is approximately 33 CFU/ml. The proposed antibody immobilization method is very simple, and the optical fiber can be manufactured in batch to reduce the cost. The detection time of the sensor is around 20 min, which is fast and suitable for detection. The assay was successfully applied for the quantitative analysis of S. aureus in natural waters and met the needs of on-site screening trace pathogenic bacteria in food safety control.


Assuntos
Técnicas Biossensoriais , Staphylococcus aureus , Anticorpos Antibacterianos , Gema de Ovo , Imunoensaio
16.
Front Neurol ; 13: 1096966, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686531

RESUMO

Objective: This study aimed to investigate the application value of multi-parametric magnetic resonance imaging (MRI) in the diagnosis of iron deposition in the substantia nigra dense zone in Parkinson's disease (PD) and to evaluate the diagnostic value of the correlation among multi-parametric imaging indicators, clinical stage, and disease duration. Materials and methods: Thirty-six patients with clinically confirmed PD and 36 healthy controls were enrolled. The disease course was recorded, and PD severity was graded using the Hoehn-Yahr (H-Y) scale. All subjects underwent magnetic sensitivity weighted imaging (SWI), neuromelanin magnetic resonance imaging (NM-MRI), and a T2*mapping sequence. Based on the fusion of the NM-MRI and SWI amplitude maps, phase maps, and T2*MAPPING value maps, NM-MRI was used to delineate the dense zone of the substantia nigra, which was divided into three sub-regions: upper, middle, and lower. In this way, the amplitude, phase, and R2* values of each sub-region and the average value of the sum of the three sub-regions were obtained simultaneously in the SWI amplitude, phase, and T2*MAPPING maps. The multi-parameter imaging indices were compared between the two groups, and the correlation between them and clinical indices was evaluated in the PD group. Results: The upper (amplitude, phase value, R2* value), middle, and lower (amplitude) right substantia nigra compact zones were significantly different between the PD and control groups. The upper (phase value, R2* value) and middle (amplitude) areas of the left substantia nigra compact zone were also significantly different between the two groups (all P < 0.05). The mean values (amplitude, phase value, R2* value) of the right substantia nigra densification zone and the mean values (phase value) of the left substantia nigra densification zone were also significantly different (all P < 0.05). Amplitudes in the middle and lower parts of the right substantia nigra dense zone were negatively correlated with the H-Y grade (middle: r = -0.475, P = 0.003; lower: r = -0.331, P = 0.049). Amplitudes of the middle and lower parts of the dense zone of the left substantia nigra were negatively correlated with the H-Y grade (middle: r = -0.342, P = 0.041; lower: r = -0.399, P = 0.016). The average amplitude of the right substantia nigra compact zone was negatively correlated with the H-Y grade (r = -0.367, P = 0.027). The average R2* value of the compact zone of the left substantia nigra was positively correlated with the H-Y grade (r = 0.345, P = 0.040). Conclusion: Multiparametric MRI sequence examination has application value in the evaluation of iron deposition in the dense zone of the substantia nigra in PD. Combined with NM-MRI, fusion analysis is beneficial for accurately locating the substantia nigra compact zone and quantitatively analyzing the iron deposition in different sub-regions. Quantitative iron deposition in the middle and lower parts of the substantia nigra dense zone may become an imaging biological indicator for early diagnosis, severity evaluation, and follow-up evaluation of PD and is thus conducive for clinical diagnosis and treatment evaluation.

17.
Anal Bioanal Chem ; 413(8): 2071-2079, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33608750

RESUMO

A simple fluorescence detection platform has been established for acetamiprid assay based on DNA three-way junctions (TWJs), which can triple the fluorescence signal without any other amplification. It is designed with three single-stranded DNAs (ssDNA), each of which contains one-third or two-thirds of the G-quadruplex sequence at each end. Upon the addition of acetamiprid, the conformation of the aptamer-containing double-stranded DNA (dsDNA) changes from its original conformation and releases a strand of ssDNA. This ssDNA, with the other two ssDNAs, can assemble into DNA TWJs, and the three pairs of the branched ends of the DNA TWJs are adjacent to each other, allowing them to form three units of G-quadruplexes. Hence, the fluorescence of N-methyl mesoporphyrin IX (NMM) is lighted by the nascent G-quadruplexes. Graphene oxide (GO) is then added to minimize the detection background by absorbing the free NMM and non-target-induced ssDNA. The proposed strategy can assay acetamiprid in a wide linear range of 0-500 nM with a detection limit of 5.73 nM. More importantly, this assay platform demonstrates high potential for acetamiprid assay in food control and environmental monitoring.


Assuntos
Aptâmeros de Nucleotídeos/química , Corantes Fluorescentes/química , Quadruplex G , Grafite/química , Neonicotinoides/análise , Resíduos de Praguicidas/análise , Técnicas Biossensoriais/métodos , DNA de Cadeia Simples/química , Monitoramento Ambiental/métodos , Análise de Alimentos/métodos , Limite de Detecção , Espectrometria de Fluorescência/métodos
18.
J Med Chem ; 64(2): 1018-1036, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33423463

RESUMO

Tetrazanbigen (TNBG) is a novel sterol isoquinoline derivative with poor water solubility and moderate inhibitory effects on human cancer cell lines via lipoapoptosis induction. Herein, we developed a series of novel TNBG analogues with improved water solubility and antiproliferative activities. The CCK-8 assay enabled us to identify a novel compound, 14g, which strongly inhibited HepG2 and A549 cell growth with IC50 values of 0.54 and 0.47 µM, respectively. The anticancer effects might be explained by the partial activation and upregulation of PPARγ expression, as indicated by the transactivation assay and western blotting evaluation. Furthermore, the in vitro antiproliferative activity was verified in an in vivo xenograft model in which 14g strongly reduced tumor growth at a dose of 10 mg/kg. In line with these positive observations, 14g exhibited an excellent water solubility of 31.4 mg/mL, which was more than 1000-fold higher than that of TNBG (4 µg/mL). Together, these results suggest that 14g is a promising anticancer therapeutic that deserves further investigation.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Compostos Azo/química , Compostos Azo/farmacologia , Gonanos/química , Gonanos/farmacologia , PPAR gama/agonistas , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Solubilidade , Relação Estrutura-Atividade , Ensaio Tumoral de Célula-Tronco , Vacúolos/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Sci Total Environ ; 764: 142813, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097246

RESUMO

Exploiting the full potential of copper-based nanoparticles in the activation of peroxymonopersulfate (PMS) is a great challenge due to their insufficient dispersity and electronic properties. We report here a novel iron­nitrogen co-doped carbon nanotube (FNC) modified with a Cu2O nanocomposite (Cu2O/FNC) that exhibits ultrahigh catalytic performance in the activation of PMS to degrade fluconazole (~95%). Catalytic performance evaluation illustrated that Cu2O/FNC also has wide pH applicability (3.0-11.0), long-term stability and excellent adaptability. In addition, luminescent bacteria toxicity tests confirm that Cu2O/FNC/PMS significantly reduced the acute biotoxicity of various recalcitrant pollutants (reduced by 45-83%). By identifying the reactive oxygen species (ROS) and catalytic performance for various pollutants, we propose that pollutants that interact weekly with activators are mostly destroyed by sulfate radicals and hydroxyl radicals, whilst both radical and non-radical routes were involved in the degradation of pollutants that were easily adsorbed. By modifying Cu2O with FNC, several crucial properties such as the specific surface area, surface defects, active sites and the charge transfer rate were significantly improved, leading to excellent catalytic performance for pollutant removal. Finally, a reasonable reaction mechanism is advanced for the fluconazole degradation pathway. This study not only develops a novel PMS oxidation system for fluconazole degradation, but also provides a new strategy to improve the reactivity and applicability of PMS activators by combining radical and non-radical activation pathways.


Assuntos
Ferro , Nanotubos de Carbono , Eletrônica , Nitrogênio , Peróxidos
20.
J Med Internet Res ; 22(12): e19452, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33320101

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is a global health burden. Self-management plays a key role in improving modifiable risk factors. OBJECTIVE: The aim of this study was to evaluate the effectiveness of wearable devices, a health management platform, and social media at improving the self-management of CKD, with the goal of establishing a new self-management intervention model. METHODS: In a 90-day prospective experimental study, a total of 60 people with CKD at stages 1-4 were enrolled in the intervention group (n=30) and control group (n=30). All participants were provided with wearable devices that collected exercise-related data. All participants maintained dietary diaries using a smartphone app. All dietary and exercise information was then uploaded to a health management platform. Suggestions about diet and exercise were provided to the intervention group only, and a social media group was created to inspire the participants in the intervention group. Participants' self-efficacy and self-management questionnaire scores, Kidney Disease Quality of Life scores, body composition, and laboratory examinations before and after the intervention were compared between the intervention and control groups. RESULTS: A total of 49 participants completed the study (25 in the intervention group and 24 in the control group); 74% of the participants were men and the mean age was 51.22 years. There were no differences in measured baseline characteristics between the groups except for educational background. After the intervention, the intervention group showed significantly higher scores for self-efficacy (mean 171.28, SD 22.92 vs mean 142.21, SD 26.36; P<.001) and self-management (mean 54.16, SD 6.71 vs mean 47.58, SD 6.42; P=.001). Kidney Disease Quality of Life scores were also higher in the intervention group (mean 293.16, SD 34.21 vs mean 276.37, SD 32.21; P=.02). The number of steps per day increased in the intervention group (9768.56 in week 1 and 11,389.12 in week 12). The estimated glomerular filtration rate (eGFR) of the intervention group was higher than that of the control group (mean 72.47, SD 24.28 vs mean 59.69, SD 22.25 mL/min/1.73m2; P=.03) and the decline in eGFR was significantly slower in the intervention group (-0.56 vs -4.58 mL/min/1.73m2). There were no differences in body composition between groups postintervention. CONCLUSIONS: The use of wearable devices, a health management platform, and social media support not only strengthened self-efficacy and self-management but also improved quality of life and a slower eGFR decline in people with CKD at stages 1-4. These results outline a new self-management model to promote healthy lifestyle behaviors for patients with CKD. TRIAL REGISTRATION: ClinicalTrials.gov NCT04617431; https://www.clinicaltrials.gov/ct2/show/NCT04617431.


Assuntos
Aplicativos Móveis/normas , Qualidade de Vida/psicologia , Insuficiência Renal Crônica/terapia , Autogestão/métodos , Mídias Sociais/tendências , Telemedicina/métodos , Dispositivos Eletrônicos Vestíveis/normas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Insuficiência Renal Crônica/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA