Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 446: 130643, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36586333

RESUMO

Triphenyl phosphate (TPHP) is a widely used aryl organophosphate flame retardant (OPFR) that has attracted attention due to its frequent detection in the environment and living organisms. To date, the reproductive toxicity of TPHP has been investigated in organisms, but its molecular mechanisms are not fully understood. Caenorhabditis elegans (C. elegans) is the ideal animal for the study of reproductive toxicity following environmental pollutants, with short generation times, intact reproductive structures, and hermaphroditic fertilization. This study aimed to explore the reproductive dysfunction and molecular mechanisms induced by TPHP exposure in C. elegans. Specifically, exposure to TPHP resulted in a reduction in the number of eggs laid and developing embryos in utero, an increase in the number of apoptotic gonadal cells, and germ cell cycle arrest. The JNK signaling pathway is a potential pathway inducing reproductive toxicity following TPHP exposure based on transcriptome sequencing (RNA-seq). Moreover, TPHP exposure induced down-regulation of vhp-1 and kgb-2 gene transcription levels, and the knockout of vhp-1 and kgb-2 in the mutant strains exhibited more severe toxicity in apoptotic gonad cells, embryos, and eggs developing in utero, suggesting that vhp-1 and kgb-2 genes play a crucial role in TPHP-induced reproductive toxicity. Our data provide convergent evidence showing that TPHP exposure results in reproductive dysfunction through the JNK signaling pathway and improve our understanding of the ecotoxicity and toxicological mechanisms of aryl-OPFRs.


Assuntos
Caenorhabditis elegans , Retardadores de Chama , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Sistema de Sinalização das MAP Quinases , Organofosfatos/toxicidade , Retardadores de Chama/toxicidade , Retardadores de Chama/metabolismo
2.
Environ Pollut ; 311: 119927, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970344

RESUMO

Environmental pollutants such as heavy metals, nano/microparticles, and organic compounds have been detected in a wide range of environmental media, causing long-term exposure in various organisms and even humans through breathing, contacting, ingestion, and other routes. Long-term exposure to environmental pollutants in organisms or humans promotes exposure of offspring to parental and environmental pollutants, and subsequently results in multiple biological defects in the offspring. This review dialectically summarizes and discusses the existing studies using Caenorhabditis elegans (C. elegans) as a model organism to explore the multi/transgenerational toxicity and potential underlying molecular mechanisms induced by environmental pollutants following parental or successive exposure patterns. Parental and successive exposure to environmental pollutants induces various biological defects in C. elegans across multiple generations, including multi/transgenerational developmental toxicity, neurotoxicity, reproductive toxicity, and metabolic disturbances, which may be transmitted to progeny through reactive oxygen species-induced damage, epigenetic mechanisms, insulin/insulin-like growth factor-1 signaling pathway. This review aims to arouse researchers' interest in the multi/transgenerational toxicity of pollutants and hopes to explore the possible long-term effects of environmental pollutants on organisms and even humans, as well as to provide constructive suggestions for the safety and management of emerging alternatives.


Assuntos
Poluentes Ambientais , Metais Pesados , Animais , Caenorhabditis elegans , Poluentes Ambientais/toxicidade , Epigênese Genética , Humanos , Metais Pesados/toxicidade , Reprodução
3.
Environ Int ; 168: 107482, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35998411

RESUMO

As a major alternative to traditional brominated flame retardants (BFRs), decabromodiphenyl ethane (DBDPE) is widely used and has been commonly detected in various environmental media and organisms. Few previous studies have focused on DBDPE-induced locomotion neurotoxicity, and the exact molecular mechanisms and related health risks remain unclear. In this study, we first analyzed the locomotion indicators of nematodes following DBDPE exposure, demonstrated that DBDPE caused locomotion neurotoxicity, and identified that a series of the transthyretin (TTR)-like genes participated in the regulation of nematode motility by transcriptomic analysis, gene transcription validation and TTR-like mutant verification. Subsequently, this study demonstrated that DBDPE exacerbated amyloid-beta (Aß) deposition by repressing TTR/TTR-like gene transcription based on Alzheimer's disease (AD) model nematodes and human SH-SY5Y cells following DBDPE exposure and further revealed that DBDPE reduced the binding between TTR and Aß by competing with the strand G region sites on the TTR/TTR-like protein, ultimately exacerbating Aß deposition and the risk of AD. In short, our study demonstrated that DBDPE induced locomotion neurotoxicity and potential AD risks through intensifying Aß deposition by inhibiting TTR/TTR-like proteins, providing reference support for risk management and policy formulation related to DBDPE and similarly structured novel BFRs.

4.
J Hazard Mater ; 425: 128043, 2022 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-34906867

RESUMO

Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) has received concerns due to its frequent detection in environmental media and biological samples. Our previous study has indicated TDCPP reduced the lifespan of Caenorhabditis elegans (C. elegans) by triggering an unconventional insulin/insulin-like growth factor signaling (IIS) pathway. This study continued to investigate the possible deleterious effects of TDCPP relating to longevity regulation signal pathways and biological processes. Specifically, this study uniquely performed small RNA transcriptome sequencing (RNA-seq), focusing on the underlying mechanisms of TDCPP-reduced the longevity of C. elegans in-depth in microRNAs (miRNAs). Based on Small RNA-seq results and transcript levels of mRNA involved in the unconventional IIS pathway, a small interaction network of miRNAs-mRNAs following TDCPP exposure in C. elegans was preliminarily established. Among them, up-regulated miR-48 and miR-84 (let-7 family members) silence the mRNA of daf-16 (the crucial member of the FoxO family and pivotal regulator in longevity) via post-transcription and translation dampening abilities, further inhibit its downstream target metallothionein-1 (mtl-1), and ultimately contributed to the reduction of nematode longevity and locomotion behaviors. Meanwhile, the high binding affinities of TDCPP with miRNAs cel-miR-48-5p and cel-miR-84-5p strongly support their participation in the regulation of nematode mobility and longevity. These findings provide a comprehensive analysis of TDCPP-reduced longevity from the perspective of miRNAs.


Assuntos
Proteínas de Caenorhabditis elegans , MicroRNAs , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Insulina , Fator de Crescimento Insulin-Like I , Longevidade , MicroRNAs/genética , Fosfatos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA