Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Glycoconj J ; 38(5): 573-583, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34515910

RESUMO

To explore effect of the structural properties of porphyra haitanensis polysaccharide on its biological activity, degraded porphyra polysaccharides were separated and purified by Cellulose DEAE-52 and Sephadex G-100 chromatography, obtaining three purified components (P1, P2 and P3). All the three components were sulfate polysaccharides containing the repeating units of → 3) ß-D-galactose (1 → 4) 3,6-anhydro-α-L-galactose (1 →, and → 3) ß-D-galactose (1 → 4) α-L-galactose-6-S (1 →, and → 3) 6-O-methyl-ß-D-galactose (1 → 4) 3,6-anhydro-α-L-galactose (1 →. The molecular weight of the three fractions was measured to be 300.3, 130.4 and 115.1 kDa, respectively. Their antioxidant activity was investigated by the determination of the free radical scavenging effect and ferric reducing power. It was found that P1, P2 and P3 possessed marked antioxidant activity. It was also found that they appreciably enhanced the proliferation, phagocytic ability and nitric oxide secretion in RAW264.7 cells. Lower molecular weight and higher sulfate content were beneficial to bioactivities of P. haitanensis polysaccharides. Overall, P2 and P3 possess superior immuno-modulatory activity to that of P1 and PHP. Thus, the current work will provide the basis for the better utilization of P. haitanensis to develop the related functional foods.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Polissacarídeos/química , Polissacarídeos/farmacologia , Porphyra/química , Animais , Compostos de Bifenilo , Configuração de Carboidratos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Peso Molecular , Óxido Nítrico/metabolismo , Picratos , Células RAW 264.7
2.
J Food Biochem ; 44(5): e13189, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32163602

RESUMO

Porphyra haitanensis polysaccharide (CPH) was degraded by pectinase to improve its biological activities. Box-Behnken response surface design was used to optimize the hydrolysis conditions. The molecular weight of CPH and the degraded P. haitanensis polysaccharide (DCPH) were measured to be 524 and 217 kDa, respectively. GC-MS spectrometry results showed that CPH and DCPH were mainly composed of galactose. In vitro antioxidant assays indicated that DCPH possessed improved radical scavenging activity and ferric iron reducing power when compared to those of CPH. In H2 O2 -treated RAW264.7 cells, DCPH was also found to be more effective in reducing the generation of malondialdehyde and reactive oxygen species than CPH. The immunomodulatory assays demonstrated that DCPH possessed superior activities in enhancing the proliferation, phagocytosis, and NO secretion in a RAW264.7 macrophage cell model to those of CPH. PRACTICAL APPLICATIONS: Polysaccharide is the most abundant bioactive component of an edible red algae Porphyra haitanensis. However, the use of CPH is limited due to its relatively low biological activities. Thus, in order to fully utilize P. haitanensis, it is necessary to enhance the biological activities of CPH for its practical use. An efficient and practical method to enhance the bioactivities of P. haitanensis polysaccharide has been developed in the present work. The DCPH prepared in this work could have potential applications in food and medicinal areas.


Assuntos
Antioxidantes , Porphyra , Animais , Antioxidantes/farmacologia , Camundongos , Peso Molecular , Polissacarídeos/farmacologia , Células RAW 264.7
3.
Int J Biol Macromol ; 118(Pt B): 1550-1557, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29981327

RESUMO

In order to improve the bioactivity of the polysaccharide from Sargassum fusiforme (PSF), the degraded polysaccharide (DPSF) was modified by carboxymethylation, yielding carboxymethylated degraded polysaccharides (CDPSF), which were further modified to generate hydroxamated derivatives (HCDPSF). Both CDPSF and HCDPSF were characterized by Fourier transform infrared spectroscopy. The molecular weight of CDPSF and HCDPSF was found to be 354 kDa and 375 kDa, respectively. The in vitro antioxidant activity of CDPSF and HCDPSF was evaluated by determining the radical scavenging ability and total antioxidant activity. The results indicated that the antioxidant activity of CDPSF and HCDPSF was significantly improved when compared to those of DPSF. Antimicrobial assays indicated that both CDPSF and HCDPSF possessed a marked antimicrobial ability, while DPSF did not exhibit such effects under the same conditions. Such polysaccharide derivatives have potentials in the pharmaceutical and food industries.


Assuntos
Ácidos Hidroxâmicos/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Sargassum/química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Radicais Livres/química , Metilação , Testes de Sensibilidade Microbiana , Peso Molecular
4.
Food Chem ; 237: 481-487, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28764023

RESUMO

In order to improve the antioxidant and antimicrobial abilities, hydroxamated degraded polysaccharides from Enteromorpha prolifera (HCDPE) were prepared from the corresponding carboxymethylated degraded polysaccharides (CDPE). HCDPE was characterized by FT-IR. The weight-average molecular weight of HCDPE was determined as 55.4kDa. The in vitro antioxidant activity of HCDPE was evaluated by determining the radical (1,1-diphenyl-2-picrylhydrazyl (DPPH), hydroxyl and superoxide anion radicals) scavenging abilities and total antioxidant activity. It was found that DPPH radical scavenging ability and total antioxidant activity of HCDPE were significantly improved compared to those of CDPE. The inhibitory effects of polysaccharides against the five bacterial strains (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella spp.) were also evaluated by bacterial inhibition zone and minimum inhibitory concentration (MIC) assays. The results indicated that CDPE and HCDPE possess marked antimicrobial ability, while such an effect was not observed for the crude polysaccharides (PE) and the degraded polysaccharides (DPE).


Assuntos
Ulva , Anti-Infecciosos , Antioxidantes , Polissacarídeos , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA