Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38648139

RESUMO

Currently prevalent multi-modal 3D detection methods rely on dense detectors that usually use dense Bird's-Eye-View (BEV) feature maps. However, the cost of such BEV feature maps is quadratic to the detection range, making it not scalable for long-range detection. Recently, LiDAR-only fully sparse architecture has been gaining attention for its high efficiency in long-range perception. In this paper, we study how to develop a multi-modal fully sparse detector. Specifically, our proposed detector integrates the well-studied 2D instance segmentation into the LiDAR side, which is parallel to the 3D instance segmentation part in the LiDAR-only baseline. The proposed instance-based fusion framework maintains full sparsity while overcoming the constraints associated with the LiDAR-only fully sparse detector. Our framework showcases state-of-the-art performance on the widely used nuScenes dataset, Waymo Open Dataset, and the long-range Argoverse 2 dataset. Notably, the inference speed of our proposed method under the long-range perception setting is 2.7× faster than that of other state-of-the-art multimodal 3D detection methods. Code is released at https://github.com/BraveGroup/FullySparseFusion.

2.
Photochem Photobiol ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644599

RESUMO

The aim of the present research is to investigate anti-UVB radiation activity of total flavonoids from Ilex latifolia Thunb. (namely large-leaved Kuding tea) on human keratinocyte cell line (HaCaT cells) based on network pharmacology and molecular docking technique. Network pharmacology was used to screen target genes of active ingredients from Ilex latifolia Thunb. associated with UVB irradiation. The possible signaling pathways were analyzed by KEGG enrichment and verified by cellular experiments. Molecular docking was used to assess the affinity between the active ingredients and the core targets. The prediction of network pharmacology and molecular docking was identified by series experiment in UVB-irradiated HaCaT cells. Network pharmacology results showed that the active ingredients of Ilex latifolia Thunb. for anti-UVB irradiation were mainly flavonoids, and the possible signaling pathways were involved in PI3K-AKT, apoptosis, MAPKs, NF-κB, and JAK-STAT3. Molecular docking indicated key binding activity between AKT1-Glycitein, STAT3-Formononetin, CASP3-Formononetin, TNF-Kaempferol, CASP3-Luteolin, and AKT1-Quercetin. The total flavonoid pretreatment (0.25-1.0 mg/mL) down-regulated the expression of IL-6, IL-1ß, and TNF-α in the cells determined by ELISA. The expression of phosphor PI3K, phosphor AKT, phosphor JAK, phosphor STAT3, phosphor JNK, and phosphor p38 MAPKs and COX-2 proteins in cytosolic and NF-κB p65 protein in nucleus were down-regulated and determined by western blot. It also protected UVB-irradiated cells from apoptosis by reducing apoptosis rate and down-regulating active-caspase 3. In a word, the total flavonoid treatment protected HaCaT cells from UVB injuries effectively, and the potential mechanism involves PI3K-AKT, JAK-STAT3, MAPK, and NF-κB pathway by anti-inflammatory and apoptosis action in cells. The mechanism in vivo experiment needs to be further confirmed in future.

3.
Photochem Photobiol ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38337181

RESUMO

Natural products are favored in the study of skin photodamage protection recently. Isoquercetin, namely 3-O-glucoside of quercetin, can be isolated from various plant species. In present research, the protective effect of isoquercitrin on UVB-induced injury in cells and mice skin were investigated. Our study reveals that 400 µM of isoquercitrin exhibits the best viability on UVB-irradiated HaCaT cells, and beneficial effects against oxidative stress UVB-induced in skin tissue by decreasing the levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and simultaneously enhancing the activity of superoxide dismutase (SOD). Additionally, isoquercitrin was identified as an anti-inflammatory agent by reducing the level of COX-2 by Western blot analysis, and inflammatory cytokines such as IL-6, IL-1ß, and TNF-α by ELISA, and UVB-induced epidermal thickening evidenced by H&E staining. It also effectively prevented UVB-induced collagen fibers from degradation identified by Masson staining. Isoquercitrin significantly inhibited MAPK pathway by downregulating the levels of AP-1, MMP-1, MMP-3, phospho-p38, phospho-JNK, phospho-ERK, cleaved caspase-9, cleaved caspase-3, and JAK2-STAT3 pathway by western blot analysis. In conclusion, isoquercitrin pretreatment protected mice skin from UVB irradiation-induced injury effectively, and the underlying mechanism may involve MAPK and JAK2-STAT3 signaling pathways.

4.
Apoptosis ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416286

RESUMO

In SARS-CoV-2 infection, it has been observed that viral replication lasts longer in the nasal mucosa than in the lungs, despite the presence of a high viral load at both sites. In hamsters, we found that the nasal mucosa exhibited a mild inflammatory response and minimal pathological injuries, whereas the lungs displayed a significant inflammatory response and severe injuries. The underlying cellular events may be induced by viral infection in three types of cell death: apoptosis, pyroptosis, and necroptosis. Our findings indicate that apoptosis was consistently activated during infection in the nasal mucosa, and the levels of apoptosis were consistent with the viral load. On the other hand, pyroptosis and a few instances of necroptosis were observed only on 7 dpi in the nasal mucosa. In the lungs, however, both pyroptosis and apoptosis were prominently activated on 3 dpi, with lower levels of apoptosis compared to the nasal mucosa. Interestingly, in reinfection, obvious viral load and apoptosis in the nasal mucosa were detected on 3 dpi, while no other forms of cell death were detected. We noted that the inflammatory reactions and pathological injuries in the nasal mucosa were milder, indicating that apoptosis may play a role in promoting lower inflammatory reactions and milder pathological injuries and contribute to the generation of long-term viral replication in the nasal mucosa. Our study provides valuable insights into the differences in cellular mechanisms during SARS-CoV-2 infection and highlights the potential significance of apoptosis regulation in the respiratory mucosa for controlling viral replication.

5.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256071

RESUMO

Patients with COVID-19 have been reported to experience neurological complications, although the main cause of death in these patients was determined to be lung damage. Notably, SARS-CoV-2-induced pathological injuries in brains with a viral presence were also found in all fatal animal cases. Thus, an appropriate animal model that mimics severe infections in the lungs and brain needs to be developed. In this paper, we compared SARS-CoV-2 infection dynamics and pathological injuries between C57BL/6Smoc-Ace2em3(hACE2-flag-Wpre-pA)Smoc transgenic hACE2-C57 mice and Syrian hamsters. Importantly, the greatest viral distribution in mice occurred in the cerebral cortex neuron area, where pathological injuries and cell death were observed. In contrast, in hamsters, viral replication and distribution occurred mainly in the lungs but not in the cerebrum, although obvious ACE2 expression was validated in the cerebrum. Consistent with the spread of the virus, significant increases in IL-1ß and IFN-γ were observed in the lungs of both animals. However, in hACE2-C57 mice, the cerebrum showed noticeable increases in IL-1ß but only mild increases in IFN-γ. Notably, our findings revealed that both the cerebrum and the lungs were prominent infection sites in hACE2 mice infected with SARS-CoV-2 with obvious pathological damage. Furthermore, hamsters exhibited severe interstitial pneumonia from 3 dpi to 5 dpi, followed by gradual recovery. Conversely, all the hACE2-C57 mice experienced severe pathological injuries in the cerebrum and lungs, leading to mortality before 5 dpi. According to these results, transgenic hACE2-C57 mice may be valuable for studying SARS-CoV-2 pathogenesis and clearance in the cerebrum. Additionally, a hamster model could serve as a crucial resource for exploring the mechanisms of recovery from infection at different dosage levels.


Assuntos
COVID-19 , Cérebro , Humanos , Cricetinae , Camundongos , Animais , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Camundongos Transgênicos , Interleucina-1beta , Mesocricetus , Pulmão
6.
Heliyon ; 10(2): e24612, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293396

RESUMO

Vaccination is the most feasible way of preventing rabies, an ancient zoonosis that remains a major public health concern globally. However, administration of inactivated rabies vaccination without adjuvants is always inefficient and necessitates four to five injections. In the current study, we explored the adjuvant characteristics of cordycepin, a major bioactive component of Cordyceps militaris, to boost immune responses against a commercially available rabies vaccine. We found that cordycepin could stimulate stronger phenotypic and functional maturation of dendritic cells (DCs). For animal experiments, mice were immunized 3 times with rabies vaccine in the presence or absence of cordycepin at 1-week interval. Analysis of T cell differentiation and serum antibody isotypes showed that humoral immunity was dominant with a Th2 biased immune response. These results were also supported by the raised ratio of follicular helper T cells (TFH) and germinal center B cells (GCB). Thus, titer of rabies virus neutralizing antibody (RVNAb) and rabies virus-specific memory B cells were both raised as a result. Furthermore, administration of cordycepin did not cause pathological phenomena or body weight loss. The findings indicate that cordycepin could be used as a promising adjuvant for rabies vaccines to get a higher range of protection without any side effects.

7.
Animal Model Exp Med ; 6(3): 183-195, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36536536

RESUMO

Although solar exposure is necessary for human health, phototoxicology induced by excessive UVB and UVA radiation, which involves sunburns, skin aging and even tumorigenesis, has been widely researched. Sunscreen is one of the most important ways to protect skin from UV phototoxic damage. As well as inorganic and organic UV filters, some natural products or plant extracts with aromatic rings in their structures, such as flavonoids or polyphenols, can absorb UV to reduce sunburn, acting as a natural UV filter; they also show antioxidant or/and anti-inflammatory activity. This could explain why, although there are no officially approval natural commercial sun-filters, more and more commercial sunscreen products containing plant extracts are available on the market. Here we summarize articles focusing on natural UV filters from plant published in the last 6 years, selecting the most significant data in order to better understand the photoprotective activity of natural products and extracts from plants, including their major constituents and main biological effects, methods for evaluating UV radiation resistance, anti-UV radiation experimental models and anti-UV radiation mechanisms.


Assuntos
Produtos Biológicos , Neoplasias Cutâneas , Queimadura Solar , Humanos , Protetores Solares/farmacologia , Protetores Solares/química , Protetores Solares/uso terapêutico , Produtos Biológicos/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Raios Ultravioleta/efeitos adversos , Queimadura Solar/tratamento farmacológico , Extratos Vegetais/farmacologia
8.
J Matern Fetal Neonatal Med ; 35(25): 5539-5545, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33588678

RESUMO

OBJECTIVE: To compare cesarean delivery (CD) rates in referral and non-referral hospitals in Maternal Safety Collaboration in Jiangsu province, China. METHODS: Sixteen participants (4 referral hospitals, 12 non-referral hospitals) from Drum Tower Hospital Collaboration for Maternal Safety reported CD rates in 2019 using ten-group classification system and maternal/neonatal morbidity and mortality. RESULTS: A total of 22,676 CDs were performed among 52,499 deliveries and the average CD rate was 43.2% (range 34.8-69.6%). CD rate in non-referral hospitals (44.7%) was significantly higher than it was in referral hospitals (40.4%, p < .001). Term singleton cephalic nulliparous women with spontaneous labor (Group 1) or induced labor (Group 2a) had higher CD rates if they were cared in non-referral hospitals compared with those in referral hospitals (Group 1: 11.8% vs. 4.4%, p < .001; Group 2a: 29.1% vs. 21.3%, p < .001). In non-referral hospitals, CD rate in Group 5 and the proportion of Group 5 to the overall population were also significantly higher than those in referral hospitals (98.5% vs. 92.5%, p < .001; and 21.0% vs. 14.5%, p < .001). CONCLUSION: To decrease the CD rate, we need to take efforts in decreasing unnecessary operations for term singleton cephalic nulliparous women and increasing the rate of trial of labor after CD.


Assuntos
Cesárea , Trabalho de Parto , Feminino , Humanos , Recém-Nascido , Gravidez , China/epidemiologia , Hospitais , Trabalho de Parto Induzido
9.
Brain Res ; 1714: 166-173, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30794767

RESUMO

Corticosterone (CORT) has long been shown to modulate 5-HT system, and to alter hippocampal functions in various physiological and pathological conditions. However, CORT-elicited changes in the hippocampal 5-HT transmission and the immobility phenotype had not been fully addressed. The current study sought to explore effects of acute CORT subcutaneously injected at 10, 20, 40 mg/kg on the extracellular 5-HT in the hippocampus and the immobility time in male CD-1 mice. Following an injection of CORT or vehicle, time course of the extracellular 5-HT in the hippocampal CA3 was determined using in vivo microdialysis. The immobility time was measured at 0 min, 60 min, 120 min, 180 min in the forced swimming test (FST) and the tail suspension test (TST), respectively. Results showed that the vehicle, used to dissolve CORT, did not affect the dialysate 5-HT, nor the immobility time, by comparing the pre- and post-injection. CORT was found to dose-dependently increase the dialysate 5-HT and decrease the immobility time when compared to their vehicle-treated controls. The peak increase in the dialysate 5-HT and the decrease in the immobility time were both obtained at the 120 min following the CORT injection. Furthermore, a negative correlation was detected between the immobility time and the peak increase in the dialysate 5-HT. Our results indicated that acute CORT injection elicits antidepressant-like actions on the hippocampal 5-HT and the immobility time. The study suggested that hippocampal 5-HT responses may be one of the neurochemical bases for the immobility phenotype following CORT injection.


Assuntos
Corticosterona/farmacologia , Hipocampo/efeitos dos fármacos , Serotonina/metabolismo , Animais , Antidepressivos/metabolismo , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corticosterona/metabolismo , Depressão/tratamento farmacológico , Depressão/genética , Elevação dos Membros Posteriores , Hipocampo/metabolismo , Masculino , Camundongos , Natação , Lobo Temporal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA