Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202405427, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38603586

RESUMO

Neutral aqueous organic redox flow batteries (AORFBs) hold the potential to facilitate the transition of renewable energy sources from auxiliary to primary energy, the commercial production of anolyte materials still suffers from insufficient performance of high-concentration and the high cost of the preparation problem. To overcome these challenges, this study provides a hydrothermal synthesis methodology and introduces the charged functional groups into hydrophobic naphthalene diimide cores, and prepares a series of high-performance naphthalene diimide anolytes. Under the synergistic effect of π-π stacking and H-bonding networks, the naphthalene diimide exhibits excellent structural stability and the highest water solubility (1.85 M for dex-NDI) reported to date. By employing the hydrothermal method, low-cost naphthalene diimides are successfully synthesized on a hundred-gram scale of $0.16 g-1 ($2.43 Ah-1), which is also the lowest price reported to date. The constructed full battery achieves a high electron concentration of 2.4 M, a high capacity of 54.4 Ah L-1, and a power density of 318 mW cm-2 with no significant capacity decay observed during long-duration cycling. These findings provide crucial support for the commercialization of AORFBs and pave the way for revolutionary developments in neutral AORFBs.

2.
Int J Phytoremediation ; 25(14): 1956-1966, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37191287

RESUMO

Phytoremediation by intercropping is a potential method to realize both production and remediation. Maize and peanut are the main crops planted in arsenic(As) contaminated areas in south China and vulnerable to As pollution. Experiments were conducted on arsenic-polluted soil with low As-accumulating maize monoculture (M), peanut monoculture (P), and intercropping with different distances between the maize and peanut (0.2 m, 0.35 m, and 0.5 m, recorded as MP0.2, MP0.35, and MP0.5, respectively). The results indicated that the As content in the maize grains and peanut lipids in the intercropping system decreased significantly, meeting the food safety standard of China (GB 2762-2017). Moreover, the land equivalent ratio (LER) and heavy metal removal equivalence ratio (MRER) of all intercropping treatments were greater than 1, indicating that this intercropping agrosystem has the advantage of production and arsenic removal, among which the yield and LER of MP0.35 treatment were the highest. Additionally, the bioconcentration factors (BCF) and translocation factor (TF) of MP0.2 increased by 117.95% and 16.89%, respectively, indicating that the root interaction affected the absorption of As in soil by crops. This study preliminarily demonstrated the feasibility of this intercropping system to safely use and remedy arsenic-contaminated farmland during production.


Phytoremediation by intercropping is a potential method to realize both production and remediation. Maize and peanuts are the main crops planted in As-contaminated areas and easily polluted by As. This study preliminarily demonstrated the feasibility of this intercropping system to safely use and remedy arsenic-contaminated farmland during production.


Assuntos
Arsênio , Poluentes do Solo , Agricultura/métodos , Arachis , Zea mays , Biodegradação Ambiental , Solo , Produtos Agrícolas , Poluentes do Solo/análise
3.
Ecotoxicol Environ Saf ; 259: 115004, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196521

RESUMO

Intercropping of hyperaccumulators with crops has emerged as a promising method for remediating arsenic (As)-contaminated soil in agroecosystems. However, the response of intercropping hyperaccumulators with different types of legume plants to diverse gradients of As-contaminated soil remains poorly understood. In this study, we assessed the response of plant growth and accumulation of an As hyperaccumulator (Pteris vittata L.) intercropped with two legume plants to three gradients of As-contaminated soil. Results indicated that soil As concentration had a substantial effect on the As uptake by plants. P. vittata growing in slightly As-contaminated soil (80 mg kg-1) exhibited higher As accumulation (1.52-5.49 folds) than those in higher As-contaminated soil (117 and 148 mg kg-1), owing to the lower soil pH in high As-contaminated soil. Intercropping with Sesbania cannabina L. increased As accumulation in P. vittata by 19.3%- 53.9% but decreased in intercropping with Cassia tora L. This finding was attributed to S. cannabina providing more NO3--N to P. vittata to support its growth, and higher resistance to As. The decreased rhizosphere pH in the intercropping treatment also resulted in the increased As accumulation in P. vittata. Meanwhile, the As concentrations in the seeds of the two legume plants met the national food standards(<0.5 mg kg-1). Therefore, the intercropping P. vittata with S. cannabina is a highly effective intercropping system in slightly As-contaminated soil and provides a potent method for As phytoremediation.


Assuntos
Arsênio , Fabaceae , Pteris , Poluentes do Solo , Arsênio/análise , Solo , Poluentes do Solo/análise , Biodegradação Ambiental , Verduras
4.
Environ Sci Pollut Res Int ; 30(18): 53037-53049, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36854940

RESUMO

Selecting suitable agronomic measures can strengthen the application of intercropping in the remediation of cadmium (Cd)-contaminated soil. In this study, the effects of different planting densities and fertilizer applications on the crop growth and Cd absorption of a pumpkin (Cucurbita moschata)-Amaranthus hypochondriacus L. intercropping system was determined. The goal was to provide enhanced means and a scientific basis for the promotion and application of this intercropping system. The Cd content of pumpkin in different planting systems was lower than the national food safety standard (0.05 mg kg-1). In the IN-1 (4 pumpkin plants intercropped with 200 A. hypochondriacus plants) and IN-2 (4 pumpkin plants intercropped with 400 A. hypochondriacus plants) intercropping systems, the bioconcentration amount (BCA) per plant of Cd in A. hypochondriacus increased by 32.43% and 25.25%, respectively, compared with that of the monocropping system (P < 0.05). The IN-2 system had the highest equivalent ratio of heavy metal removal (3.08), indicating that this model had a substantial advantage for removing Cd. The land equivalent ratio of IN-1 (2.89) and IN-2 (2.60) was significantly higher than that of other intercropping systems, indicating that these two models had obvious yield advantages. In our study, chicken manure was the best at promoting the growth and yield of the two plants and sludge treatment significantly enhance Cd absorption of A. hypochondriacus. In general, intercropping four pumpkin plants with 400 A. hypochondriacus plants and applying chicken manure fertilizer can strengthen the application of this intercropping system in Cd-contaminated soil.


Assuntos
Amaranthus , Cucurbita , Poluentes do Solo , Cádmio/análise , Fazendas , Fertilizantes , Solo , Esterco , Poluentes do Solo/análise , Plantas , Biodegradação Ambiental
5.
Small Methods ; 7(7): e2300021, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36960934

RESUMO

The development of robust nonplatinum electrocatalysts to enhance the performance of formate oxidation reaction (FOR) and oxygen reduction reaction (ORR) is one of the key issues for the commercialization of direct formate fuel cells (DFFCs), but still challenging. Herein, a structurally controlled 3D flower-like PdCu nanosheet (NS) catalyst is synthesized by a method of oil bath reduction under mild conditions as a bifunctional electrocatalyst for DFFCs. Under the dual tuning on the composition and intermetallic phase, the PdCu nanosheet catalyst exhibits 8.67 times higher mass activity for anodic formate oxidation reaction than the commercial Pd/C. For the cathodic ORR, a positive shift half-wave potential is obtained for PdCu nanosheets exceeding Pt/C. Moreover, after a long-term stability test, the current density of the PdCu nanosheet catalyst for FOR and ORR can be well maintained with the least activity decay. When the PdCu NSs are used as optimized anode and cathode electrodes for DFFCs enable a peak power density as high as 53 mW cm-2 at room temperature, which is about 1.3 times higher than that of the commercial Pd/C and Pt/C as anode and cathode electrodes. This work provides a potential strategy to improve the catalytic performance of non-Pt-based nanocatalysts.

6.
Ecotoxicol Environ Saf ; 253: 114659, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36812869

RESUMO

Glyphosate (GLY) is the most widely used herbicide worldwide, and its effects on animals and plants have attracted increasing attention. In this study, we explored the following: (1) the effects of multigenerational chronic exposure to GLY and H2O2, alone or in combination, on the egg hatching rate and individual morphology of Pomacea canaliculata; and (2) the effects of short-term chronic exposure to GLY and H2O2, alone or in combination, on the reproductive system of P. canaliculata. The results showed that H2O2 and GLY exposure had distinct inhibitory effects on the hatching rate and individual growth indices with a substantial dose effect, and the F1 generation had the lowest resistance. In addition, with the prolongation of exposure time, the ovarian tissue was damaged, and the fecundity decreased; however, the snails could still lay eggs. In conclusion, these results suggest that P. canaliculata can tolerate low concentrations of pollution and in addition to drug dosage, the control should focus on two time points, the juvenile and early stage of spawning.


Assuntos
Peróxido de Hidrogênio , Reprodução , Animais , Peróxido de Hidrogênio/farmacologia , Caramujos , Estresse Oxidativo , Glifosato
7.
Sci Total Environ ; 851(Pt 2): 158229, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36007654

RESUMO

Interplanting has been highlighted as a promising, cost-effective, and environmentally friendly solution for the remediation of contaminated soil. In this study, field experiments were conducted to study growth and cadmium (Cd) uptake in monoculture and interplanting systems with rice varieties Changliangyou 772 (C-772) and Changxianggu (Cho-ko-koku). And a pot culture experiment was conducted to investigate the response of the rhizosphere microecology of these two rice varieties. In the interplanting system of the field study, the Cd concentration in the grains of C-772 was significantly reduced (P < 0.05) from 0.30 mg kg-1 to 0.16 mg kg-1 and reached the national food safety standard of China (GB2762-2017, 0.20 mg kg-1), whereas the bioconcentration amount (BCA) per plant of Cd in Cho-ko-koku was significantly increased by 68.18 % (P < 0.05). The land equivalent ratio (LER) and Cd metal removal equivalent ratio (MRER) of the interplanting system were 1.03 and 1.05, illustrating that the interplanting system was superior in terms of yield and Cd elimination. In the pot experiment, the interplanting system significantly (P < 0.05) reduced the iron plaque content on the root surface and organic acids content in the rhizosphere environment of C-772 while markedly increasing those levels in Cho-ko-koku. At ripening stage, the interplanting system significantly decreased the rhizosphere available Cd concentration of C-772 from 0.38 mg kg-1 to 0.22 mg kg-1 (P < 0.05), while significantly increased the rhizosphere available Cd concentration of Cho-ko-koku from 0.27 mg kg-1 to 0.32 mg kg-1 (P < 0.05). Thus, Cd uptake of C-772 and Cho-ko-koku showed apparent differences. Oxalic and tartaric acid were identified as the most crucial factors affecting Cd uptake by C-772 and Cho-ko-koku in the interplanting system, respectively. In summary, this interplanting system is a promising planting pattern that can simultaneously improve land use efficiency and alleviate Cd pollution.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Poluentes do Solo/análise , Solo , Objetivos , Ferro
8.
Nanoscale ; 14(26): 9419-9430, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35730753

RESUMO

The energy-filtering effect has been widely employed to elucidate the enhanced thermoelectric properties of organic/inorganic hybrids. However, the traditional Mott criterion cannot identify the energy-filtering effect of organic/inorganic hybrids due to the limitations of the Hall effect measurement in determining their carrier concentration. In this work, a carrier concentration-independent strategy under the theoretical framework of the Kang-Snyder model is proposed and demonstrated using PANI/MWCNT composites. The result indicates that the energy-filtering effect is triggered on increasing the temperature to 220 K. The energy-filtering effect gives a symmetry-breaking characteristic to the density of states of the charge carriers and leads to a higher thermopower of PANI/MWCNT than that of each constituent. From a morphological perspective, a paracrystalline PANI layer with a thickness of 3 nm is spontaneously assembled on the MWCNT network and serves as a metallic percolation pathway for carriers, resulting in a 5.56-fold increase in conductivity. The cooperative 3D carrier transport mode, including the 1D metallic transport along the paracrystalline PANI and the 2D cross-interface energy-filtering transport, co-determines a 4-fold increase in the power factors of PANI/MWCNT at 300 K. This work provides a physical insight into the improvement of the thermoelectric performance of organic/inorganic hybrids via the energy-filtering effect.

10.
Natl Sci Rev ; 8(3): nwaa256, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34694299

RESUMO

[This retracts the article DOI: 10.1093/nsr/nwaa223.].

11.
ACS Nano ; 15(10): 16469-16477, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34643368

RESUMO

Two-dimensional materials (2D materials) show great advantages in high-performance lithium ion battery materials due to the inherent ion channels and rich ion sites. Unfortunately, rare 2D materials own all desired attributes to meet complex scenarios. Further enriching the 2D materials database for lithium ion battery use is of high interest. In this work, we extend the list of candidates for lithium ion batteries based on a 2D material identification theory. More importantly, a usability identification framework leveraging the competitive mechanism between the adsorbability and reversibility of ions on a 2D material is proposed to assist the deeper screening of practicable 2D materials. As a result, 215 2D materials including 158 anodes, 21 cathodes, and 36 solid electrolytes are predicted to be practicable for lithium ion battery use. The comparison between the identified 2D materials with the known ones verifies the reliability of our strategy. This work significantly enriches the choices of 2D materials to satisfy the various battery demands and provides a general methodology to assess the usability of unexploited 2D materials for lithium ion batteries.

12.
Sci Total Environ ; 800: 149600, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426335

RESUMO

Paddy field pollution with Cd has become a serious problem and poses threat to public health. Intercropping is new good agricultural practice for phytoremediation in Cd contaminated soil. Field and pot experiments were conducted to examine the effects of intercropping low Cd-accumulating rice with Sesbania cannabina on plant growth, uptake of Cd by the intercropping system, and rhizosphere microecology, and to evaluate the potential remediation of Cd contaminated soil and safety production of rice. The results of in the field experiment show that, in intercropping system, the concentration of Cd in the grain of rice (0.18 mg kg-1) was below the threshold level permitted by the National Food Safety Standard of China (GB 2762-2017, 0.20 mg kg-1). Furthermore, the yield per plant of rice in intercropping system significantly (P < 0.05) increased by 19.71%. At the same time, the bio-concentration amount (BCA) of Cd per plant of Sesbania cannabina in intercropping system significantly (P < 0.05) increased by 46.15%. The metal removal equivalent ratio (MRER) of Cd was 1.11, indicating that the intercropping system had advantage in Cd removal. In the pot experiment, the rice intercropped with Sesbania cannabina under no barrier (IN) treatment significantly (P < 0.05) decreased the content of rhizosphere organic acids (oxalic and malic acids), and significantly (P < 0.05) increased the rhizosphere pH value and total iron plaque concentration on the root surface compared to the intercropping with plastic barrier (IN+P) treatment, which could significantly (P < 0.05) decreased the available Cd content in rhizosphere soil and the accumulation of Cd in rice organs. With this study we demonstrated that lower rhizosphere organic acids and higher iron plaque can obstruct and decreased the Cd absorbed by rice in a rice-Sesbania cannabina intercropping system. We conclude that intercropping rice with Sesbania cannabina is a promising and cost-effective agricultural practice for safe crop production and for phytoremediation in Cd-contaminated paddy soil.


Assuntos
Oryza , Sesbania , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Solo , Poluentes do Solo/análise
13.
Phys Rev E ; 100(3-1): 033113, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31640065

RESUMO

The external electric field enables separation and transport of droplets effectively in microfluidic devices. Herein, a volume-of-fluid (VOF) + level-set (LS) + smoothed physical parameters (SPP) method associated with the dynamically adaptive grid technique is extended to simulate three-dimensional leaky dielectric droplets in the electric field. The effects of electric and hydrodynamic forces on droplet behaviors are investigated. It is demonstrated that the electric force could act toward the outside or inside of a droplet and produce different droplet deformations. For the dielectrophoretic migration of droplets in the nonuniform electric field, the electric force has a dominant effect. It is found that when the electric conductivity ratio is greater than 1, an unbalanced electric force toward a stronger electric field is generated, bringing about the migration toward a stronger electric field. In contrast, when the electric conductivity ratio is smaller than 1, the unbalanced electric force direction is reversed and the droplet migrates toward a weaker electric field. The hydrodynamic force produces little promotion or hindrance to droplet migration. A greater permittivity ratio usually produces greater electric force and migration velocity. The droplet migrates along one direction in a symmetric nonuniform electric field but tends to migrate along the normal direction of electric potential profiles in an asymmetric nonuniform electric field.

14.
ChemSusChem ; 10(10): 2135-2139, 2017 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-28296200

RESUMO

Conventionally, both the thermal degradation of the anion-exchange membrane and the requirement of additional hydroxide for fuel oxidation reaction hinder the development of the high-temperature alkaline direct liquid fuel cells. The present work addresses these two issues by reporting a polybenzimidazole-membrane-based direct formate fuel cell (DFFC). Theoretically, the cell voltage of the high-temperature alkaline DFFC can be as high as 1.45 V at 90 °C. It has been demonstrated that a proof-of-concept alkaline DFFC without adding additional hydroxide yields a peak power density of 20.9 mW cm-2 , an order of magnitude higher than both alkaline direct ethanol fuel cells and alkaline direct methanol fuel cells, mainly because the hydrolysis of formate provides enough OH- ions for formate oxidation reaction. It was also found that this hydroxide self-feeding high-temperature alkaline DFFC shows a stable 100 min constant-current discharge at 90 °C, proving the conceptual feasibility.


Assuntos
Álcalis/química , Formiatos/química , Temperatura Alta , Hidróxidos/química , Termodinâmica
15.
Angew Chem Int Ed Engl ; 56(21): 5734-5737, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28338289

RESUMO

A barrier that limits the development of the conventional cation-exchange membrane direct liquid fuel cells (CEM-DLFCs) is that the CEM-DLFCs need additional base to offer both alkaline environment and charge carriers. Herein, we propose a Na+ -conducting direct formate fuel cell (Na-DFFC) that is operated in the absence of added base. A proof-of-concept Na-DFFC yields a peak power density of 33 mW cm-2 at 60 °C, mainly because the hydrolysis of sodium formate provides enough OH- and Na+ ions, proving the conceptual feasibility. Moreover, contrary to the conventional chlor-alkali process, this Na-DFFC enables to generate electricity and produce NaOH simultaneously without polluting the environment. The Na-DFFC runs stably during 13 hours of continuous operation at a constant current of 10 mA, along with a theoretical production of 195 mg NaOH. This work presents a new type of electrochemical conversion device that possesses a wide range of potential applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA