Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Environ Res ; : 119225, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38797461

RESUMO

Sulfadiazine (SDZ) is a kind of anti-degradable antibiotics that is commonly found in wastewater, but its removal mechanism and transformation pathway remain unclear in microalgal systems. This study investigated the effects of initial algae concentration and SDZ-induced stress on microalgal growth metabolism, SDZ removal efficiency, and transformation pathways during Chlorella sp. cultivation. Results showed that SDZ had an inhibitory effect on the growth of microalgae, and increasing the initial algal biomass could alleviate the inhibitory effect of SDZ. When the initial algal biomass of Chlorella sp. was increased to 0.25 g·L-1, the SDZ removal rate could reach 53.27%-89.07%. The higher the initial algal biomass, the higher the SOD activity of microalgae, and the better the protective effect on microalgae, which was one of the reasons for the increase in SDZ removal efficiency. Meanwhile, SDZ stress causes changes in photosynthetic pigments, lipids, total sugars and protein content of Chlorella sp. in response to environmental changes. The main degradation mechanisms of SDZ by Chlorella sp. were biodegradation (37.82%) and photodegradation (23%). Most of the degradation products of SDZ were less toxic than the parent compound, and the green algae were highly susceptible to SDZ and its degradation products. The findings from this study offered valuable insights into the tradeoffs between accumulating microalgal biomass and antibiotic toxic risks during wastewater treatment, providing essential direction for the advancement in future research and full-scale application.

2.
Natl Sci Rev ; 11(5): nwae102, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38689713

RESUMO

Spiking neural networks (SNNs) are gaining increasing attention for their biological plausibility and potential for improved computational efficiency. To match the high spatial-temporal dynamics in SNNs, neuromorphic chips are highly desired to execute SNNs in hardware-based neuron and synapse circuits directly. This paper presents a large-scale neuromorphic chip named Darwin3 with a novel instruction set architecture, which comprises 10 primary instructions and a few extended instructions. It supports flexible neuron model programming and local learning rule designs. The Darwin3 chip architecture is designed in a mesh of computing nodes with an innovative routing algorithm. We used a compression mechanism to represent synaptic connections, significantly reducing memory usage. The Darwin3 chip supports up to 2.35 million neurons, making it the largest of its kind on the neuron scale. The experimental results showed that the code density was improved by up to 28.3× in Darwin3, and that the neuron core fan-in and fan-out were improved by up to 4096× and 3072× by connection compression compared to the physical memory depth. Our Darwin3 chip also provided memory saving between 6.8× and 200.8× when mapping convolutional spiking neural networks onto the chip, demonstrating state-of-the-art performance in accuracy and latency compared to other neuromorphic chips.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38483763

RESUMO

Whether advanced biological waste treatment technologies, such as hydrothermal pretreatment (HTP) integrated anaerobic digestion (AD), could enhance the removal of different antibiotics remains unclear. This study investigated the outcome of antibiotics and methane productivity during pig manure treatment via HTP, AD, and HTP + AD. Results showed improved removal efficiency of sulfadiazine (SDZ), oxytetracycline (OTC), and enrofloxacin (ENR) with increased HTP temperatures (70, 90, 120, 150, and 170 °C). OTC achieved the highest removal efficiency of 86.8% at 170 °C because of its high sensitivity to heat treatment. For AD, SDZ exhibited resistance with a removal efficiency of 52.8%. However, OTC and ENR could be removed completely within 30 days. When HTP was used prior to AD, OTC and ENR could achieve complete removal. However, residual SDZ levels reduced to 20% and 16% at 150 and 170 °C, respectively. The methanogenic potential showed an overall upward trend as the HTP temperature increased. Microbial analysis revealed the antibiotics-induced enrichment of specific microorganisms during AD. Firmicutes were the dominant bacterial phylum, with their abundance positively correlated with the addition of antibiotics. Methanobacterium and Methanosarcina emerged as the dominant archaea that drove methane production during AD. Thus, HTP can be a potential pretreatment before AD to reduce antibiotic-related risks in manure waste handling.

4.
Sci Total Environ ; 921: 170998, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38365044

RESUMO

Chromophoric dissolved organic matter (CDOM) is an important photochemical precursor to reactive intermediates (RIs) (e.g., excited triplet states of chromophoric dissolved organic matter (3CDOM⁎), hydroxyl radicals (·OH), and singlet oxygen (1O2)) in aquatic systems to drive the photodegradation of contaminants. There have been limited studies on the photoproduction of RIs in coastal seawater CDOM in Asia, which impedes our ability to model the lifetimes and fates of contaminants in these coastal seawater systems. Hong Kong is an urban metropolis in South China, whose coastal seawater is susceptible to anthropogenic activities from the surrounding areas and the nearby Pearl River. We investigated the photoproduction of RIs in seawater around Hong Kong during the wet vs. dry season. Higher intensities of fluorescent components, dissolved organic carbon concentration ([DOC]), apparent quantum yields of RIs (ΦRIs), and steady-state concentrations of photogenerated RIs ([RIs]ss) were observed for samples collected in the areas closest to the Pearl River during the wet season. Lower humification degrees and ΦRIs but higher intensities of fluorescent components and [RIs]ss were generally observed for the wet season samples compared to the dry season samples. Statistical analysis revealed strong significant correlations (Spearman |r| > 0.6, p < 0.05) between ΦRIs and the absorbance properties (including the absorbance ratio E2:E3, spectral slope coefficients S350-400, and spectral slope ratio SR) of CDOM, and between [RIs]ss and the quantity-reflected properties (including the fluorescence intensity of humic-like components) of CDOM. Our modeling analyses combining orthogonal partial least squares and stepwise multiple linear regression showed excellent prediction strengths for [1O2]ss and [3CDOM⁎]ss (R2adj > 0.7) when [DOC] and the chemical and optical properties of CDOM were used as predictor variables. These modeling results demonstrate the feasibility of predicting the concentrations and quantum yields of RIs in seawater around Hong Kong, and potentially other coastal cities in South China, from easily measurable chemical and optical properties.

5.
Adv Mater ; 36(15): e2310051, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38145580

RESUMO

Sodium-ion batteries (SIBs) hold great promise for next-generation grid-scale energy storage. However, the highly instable electrolyte/electrode interphases threaten the long-term cycling of high-energy SIBs. In particular, the instable cathode electrolyte interphase (CEI) at high voltage causes persistent electrolyte decomposition, transition metal dissolution, and fast capacity fade. Here, this work proposes a balanced principle for the molecular design of SIB electrolytes that enables an ultra-thin, homogeneous, and robust CEI layer by coupling an intrinsically oxidation-stable succinonitrile solvent with moderately solvating carbonates. The proposed electrolyte not only shows limited anodic decomposition thus leading to a thin CEI, but also suppresses dissolution of CEI components at high voltage. Consequently, the tamed electrolyte/electrode interphases enable extremely stable cycling of Na3V2O2(PO4)2F (NVOPF) cathodes with outstanding capacity retention (>90%) over 3000 cycles (8 months) at 1 C with a high charging voltage of 4.3 V. Further, the NVOPF||hard carbon full cell shows stable cycling over 500 cycles at 1 C with a high average Coulombic efficiency (CE) of 99.6%. The electrolyte also endows high-voltage operation of SIBs with great temperature adaptability from -25 to 60 °C, shedding light on the essence of fundamental electrolyte design for SIBs operating under harsh conditions.

6.
Heliyon ; 9(11): e21707, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38034778

RESUMO

Prior to crosslinking and vulcanization, fluorosilicone rubber is a linear polymer. This linear polymer contains 3,3,3,-trifluoropropyl methyl siloxane links, a few methyl vinyl siloxane links, and is formed by co-polymerization of 1,3,5-trimethyl-1,3,5-tris(3,3,3-trifluoropropyl) cyclotrisiloxane (D3F) with 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (V4) under alkaline conditions. To improve the performance of fluorosilicone rubber, three key points should be considered during the synthesis of vinyl-containing high-molecular-weight linear fluorosilicone polymers (fluorosilicone raw rubber): first, avoid the generation of low molecular weight equilibrium by-products; second, eliminate the influence of impurities; and third, increase the copolymerization participation rate of monomer V4. From the three aspects above, this study optimized the reaction conditions for the synthesis of high-molecular-weight linear fluorosilicone polymers containing vinyl. Various factors influencing polymerization were thoroughly investigated. These factors include the initiation system, accelerator, equilibrium reaction, feeding ratio, feeding sequence, neutralization mode, impurity content, etc.

7.
Sci Bull (Beijing) ; 68(22): 2849-2861, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37852823

RESUMO

Land cover changes (LCCs) affect surface temperatures at local scale through biophysical processes. However, previous observation-based studies mainly focused on the potential effects of virtual afforestation/deforestation using the space-for-time assumption, while the actual effects of all types of realistic LCCs are underexplored. Here, we adopted the space-and-time scheme and utilized extensive high-resolution (1-km) satellite observations to perform the first such assessment. We showed that, from 2006 to 2015, the average temperature in the areas with LCCs increased by 0.08 K globally, but varied significantly across latitudes, ranging from -0.05 to 0.18 K. Cropland expansions dominated summertime cooling effects in the northern mid-latitudes, whereas forest-related LCCs caused warming effects elsewhere. These effects accounted for up to 44.6% of overall concurrent warming, suggesting that LCC influences cannot be ignored. In addition, we revealed obvious asymmetries in the actual effects, i.e., LCCs with warming effects occurred more frequently, with stronger intensities, than LCCs with cooling effects. Even for the mutual changes between two covers in the same region, warming LCCs generally had larger magnitudes than their cooling counterparts due to asymmetric changes in transition fractions and driving variables. These novel findings, derived from the assessment of actual LCCs, provide more realistic implications for land management and climate adaptation policies.

8.
Cell Metab ; 35(10): 1752-1766.e8, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37591244

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is regarded as a pandemic that affects about a quarter of the global population. Recently, host-gut microbiota metabolic interactions have emerged as distinct mechanistic pathways implicated in the development of NAFLD. Here, we report that a group of gut microbiota-modified bile acids (BAs), hyodeoxycholic acid (HDCA) species, are negatively correlated with the presence and severity of NAFLD. HDCA treatment has been shown to alleviate NAFLD in multiple mouse models by inhibiting intestinal farnesoid X receptor (FXR) and upregulating hepatic CYP7B1. Additionally, HDCA significantly increased abundances of probiotic species such as Parabacteroides distasonis, which enhances lipid catabolism through fatty acid-hepatic peroxisome proliferator-activated receptor alpha (PPARα) signaling, which in turn upregulates hepatic FXR. These findings suggest that HDCA has therapeutic potential for treating NAFLD, with a unique mechanism of simultaneously activating hepatic CYP7B1 and PPARα.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , PPAR alfa/metabolismo , Fígado/metabolismo , Ácido Desoxicólico/metabolismo , Ácido Desoxicólico/uso terapêutico , Ácidos e Sais Biliares/metabolismo
9.
Sci China Life Sci ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37515688

RESUMO

Bile acids (BAs) play a crucial role in nutrient absorption and act as key regulators of lipid and glucose metabolism and immune homeostasis. Through the enterohepatic circulation, BAs are synthesized, metabolized, and reabsorbed, with a portion entering the vascular circulation and distributing systemically. This allows BAs to interact with receptors in all major organs, leading to organ-organ interactions that regulate both local and global metabolic processes, as well as the immune system. This review focuses on the whole-body effects of BA-mediated metabolic and immunological regulation, including in the brain, heart, liver, intestine, eyes, skin, adipose tissue, and muscle. Targeting BA synthesis and receptor signaling is a promising strategy for the development of novel therapies for various diseases throughout the body.

10.
Front Immunol ; 14: 1180837, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325614

RESUMO

Objectives: The mechanism of Brucella infection regulating macrophage phenotype has not been completely elucidated until now. This study aimed to determine the mechanism of Brucella abortus in the modulation of macrophage phenotype using RAW264.7 cells as a model. Materials and methods: RT-qPCR, ELISA and flow cytometry were used to detect the inflammatory factor production and phenotype conversion associated with M1/M2 polarization of macrophages by Brucella abortus infection. Western blot and immunofluorescence were used to analyze the role of nuclear factor kappa B (NF-κB) signaling pathway in regulation of Brucella abortus-induced macrophage polarization. Chromatin immunoprecipitation sequencing (Chip-seq), bioinformatics analysis and luciferase reporter assay were used to screen and validate NF-κB target genes associated with macrophage polarization and further verify its function. Results: The results demonstrate that B. abortus induces a macrophage phenotypic switch and inflammatory response in a time-dependent manner. With the increase of infection time, B. abortus infection-induced M1-type increased first, peaked at 12 h, and then decreased, whereas the M2-type decreased first, trough at 12 h, and then increased. The trend of intracellular survival of B. abortus was consistent with that of M2 type. When NF-κB was inhibited, M1-type polarization was inhibited and M2-type was promoted, and the intracellular survival of B. abortus increased significantly. Chip-seq and luciferase reporter assay results showed that NF-κB binds to the glutaminase gene (Gls). Gls expression was down-regulated when NF-κB was inhibited. Furthermore, when Gls was inhibited, M1-type polarization was inhibited and M2-type was promoted, the intracellular survival of B. abortus increased significantly. Our data further suggest that NF-κB and its key target gene Gls play an important role in controlling macrophage phenotypic transformation. Conclusions: Taken together, our study demonstrates that B. abortus infection can induce dynamic transformation of M1/M2 phenotype in macrophages. Highlighting NF-κB as a central pathway that regulates M1/M2 phenotypic transition. This is the first to elucidate the molecular mechanism of B. abortus regulation of macrophage phenotype switch and inflammatory response by regulating the key gene Gls, which is regulated by the transcription factor NF-κB.


Assuntos
Brucella abortus , NF-kappa B , NF-kappa B/metabolismo , Glutaminase/metabolismo , Transdução de Sinais/fisiologia , Macrófagos/metabolismo
12.
Nat Commun ; 14(1): 121, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624102

RESUMO

Vegetation change can alter surface energy balance and subsequently affect the local climate. This biophysical impact has been well studied for forestation cases, but the sign and magnitude for persistent earth greening remain controversial. Based on long-term remote sensing observations, we quantify the unidirectional impact of vegetation greening on radiometric surface temperature over 2001-2018. Here, we show a global negative temperature response with large spatial and seasonal variability. Snow cover, vegetation greenness, and shortwave radiation are the major driving factors of the temperature sensitivity by regulating the relative dominance of radiative and non-radiative processes. Combined with the observed greening trend, we find a global cooling of -0.018 K/decade, which slows down 4.6 ± 3.2% of the global warming. Regionally, this cooling effect can offset 39.4 ± 13.9% and 19.0 ± 8.2% of the corresponding warming in India and China. These results highlight the necessity of considering this vegetation-related biophysical climate effect when informing local climate adaptation strategies.


Assuntos
Mudança Climática , Clima , Temperatura , China , Índia , Ecossistema
14.
Nutrients ; 14(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36079740

RESUMO

Data-driven temporal dietary patterning (TDP) methods were previously developed. The objectives were to create data-driven temporal dietary patterns and assess concurrent validity of energy and time cut-offs describing the data-driven TDPs by determining their relationships to BMI and waist circumference (WC). The first day 24-h dietary recall timing and amounts of energy for 17,915 U.S. adults of the National Health and Nutrition Examination Survey 2007−2016 were used to create clusters representing four TDPs using dynamic time warping and the kernel k-means clustering algorithm. Energy and time cut-offs were extracted from visualization of the data-derived TDPs and then applied to the data to find cut-off-derived TDPs. The strength of TDP relationships with BMI and WC were assessed using adjusted multivariate regression and compared. Both methods showed a cluster, representing a TDP with proportionally equivalent average energy consumed during three eating events/day, associated with significantly lower BMI and WC compared to the other three clusters that had one energy intake peak/day at 13:00, 18:00, and 19:00 (all p < 0.0001). Participant clusters of the methods were highly overlapped (>83%) and showed similar relationships with obesity. Data-driven TDP was validated using descriptive cut-offs and hold promise for obesity interventions and translation to dietary guidance.


Assuntos
Proteínas de Ligação a DNA , Obesidade , Adulto , Índice de Massa Corporal , Humanos , Inquéritos Nutricionais , Circunferência da Cintura
15.
Sensors (Basel) ; 22(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35746331

RESUMO

The Satellite network is an important part of the global network. However, the complex architecture, changeable constellation topology, and frequent inter-satellite connection switching problems bring great challenges to the routing designs of satellite networks, making the study of the routing methods in satellite networks a research hotspot. Therefore, this paper investigates the latest existing routing works to tackle the dynamic routing problems in satellite networks. The architecture and development of satellite networks are presented and analyzed first. Afterward, dynamic routing problems in satellite networks are analyzed in detail based on the time-varying network topology. According to the latest works, the advanced satellite network routing schemes, including single-layer and multi-layer dynamic routing are introduced and analyzed. In addition, the merits, shortcomings, and applications of these schemes are analyzed and summarized. Finally, potential technologies and future directions are discussed.

16.
Sci Total Environ ; 839: 156145, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35613640

RESUMO

With the widespread use of sunscreen and other personal care products, organic ultraviolet filters (OUVFs) have become widely detected in the aquatic environment. Direct and indirect photolysis are important transformation pathways of OUVFs in aquatic environments, so their transformation products (TPs) are also chemicals of concern. Butyl methoxydibenzoylmethane (BMDBM) is one of the most commonly used OUVFs worldwide due to its ability to absorb ultraviolet light across a wide range of wavelengths, and it is ubiquitously detected in aquatic environments. In this study, we investigated the photodegradation of BMDBM through direct photolysis and hydroxyl radical (•OH) photooxidation. TPs were identified using ultrahigh performance liquid chromatography-high resolution mass spectrometry, and reaction mechanisms were proposed. Our results showed that the photodegradation rates for both enol and keto tautomer forms of BMDBM during direct photolysis and •OH photooxidation were similar. The formation of TPs resulted from α-cleavage and decarbonylation reactions involving the keto form of BMDBM. Comparisons of the kinetic data and TPs revealed that the direct photolysis mechanism was a significant sink for BMDBM even during •OH photooxidation. Evaluations of environmental properties based on the predicted physicochemical properties of BMDBM and TPs suggests that some of the TPs will have higher mobility than BMDBM. The quantitative structure-activity relationship (QSAR) approach was used to evaluate the ecotoxicity of BMDBM and the identified TPs. Most TPs were found to be less ecotoxic than BMDBM; however, TPs that had a diphenyl ring structure could be more ecotoxic than BMDBM. Overall, this study provides new insights into the photochemical behavior and ecotoxicity of BMDBM and its TPs, which are important for assessing the fate, persistence, accumulation, and adverse impacts of these compounds in aquatic environments.


Assuntos
Raios Ultravioleta , Poluentes Químicos da Água , Radical Hidroxila , Fotoquímica , Fotólise , Protetores Solares/química , Poluentes Químicos da Água/análise
17.
Nat Commun ; 13(1): 2060, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440584

RESUMO

Calorie restriction (CR) and fasting are common approaches to weight reduction, but the maintenance is difficult after resuming food consumption. Meanwhile, the gut microbiome associated with energy harvest alters dramatically in response to nutrient deprivation. Here, we reported that CR and high-fat diet (HFD) both remodeled the gut microbiota with similar microbial composition, Parabacteroides distasonis was most significantly decreased after CR or HFD. CR altered microbiota and reprogramed metabolism, resulting in a distinct serum bile acid profile characterized by depleting the proportion of non-12α-hydroxylated bile acids, ursodeoxycholic acid and lithocholic acid. Downregulation of UCP1 expression in brown adipose tissue and decreased serum GLP-1 were observed in the weight-rebound mice. Moreover, treatment with Parabacteroides distasonis or non-12α-hydroxylated bile acids ameliorated weight regain via increased thermogenesis. Our results highlighted the gut microbiota-bile acid crosstalk in rebound weight gain and Parabacteroides distasonis as a potential probiotic to prevent rapid post-CR weight gain.


Assuntos
Microbioma Gastrointestinal , Animais , Bacteroidetes , Ácidos e Sais Biliares , Restrição Calórica , Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Aumento de Peso
18.
ACS ES T Water ; 2(11): 2014-2024, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37552716

RESUMO

Understanding per capita rates of disease incidence or prevalence from wastewater surveillance data requires an estimate of the population contributing to wastewater samples, given that populations in large urban areas are dynamic, especially if major events, such as the onset of the COVID-19 pandemic, cause large population shifts. To assess whether commonly measured wastewater parameters can be used to estimate sewershed populations, we used wastewater data collected from New York City's (NYC) 14 wastewater treatment facilities to evaluate the relationship between influent loads of four wastewater parameters-ammonia, total Kjeldahl nitrogen, total suspended solids, and five-day carbonaceous biochemical oxygen demand-and census-based population estimates of the corresponding sewersheds during 2019, when populations were assumed to be relatively stable. Ammonia mass load had the most consistent relationship with sewershed population, regardless of wet weather contributions to NYC's predominantly combined sewer system. Changes in ammonia loads due to COVID-19 restrictions enacted in March 2020 generally reflected population shifts in sewersheds serving areas of Manhattan and Brooklyn, for which previous studies report decreased commuter mobility and residential populations. Our findings highlight the utility of ammonia mass load in influent wastewater as a population indicator to normalize wastewater-based epidemiology data and track sewershed population dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA