Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1338106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606064

RESUMO

Introduction: Heterologous grafting has been proven to be a valid approach to improving potato fertility, especially when grafting potatoes with other Solanaceae family plants. However, the mechanisms underlying grafting-induced improvement in potato fertility are still unknown. Methods: In this study, a poor-fertility potato cultivar "Qingshu No. 9" (Q9) was grafted with a tomato cultivar "Zhongyan988" (ZY988) to study the effects of heterologous grafting in the former. The tuber yield was controlled by different grafting and cultivation approaches, and the correlation between tuber yield and pollen vigor was studied. Comparative transcriptomic analysis of the potential mechanisms of pollen in potato scion fertility changes. Result: Grafting with the tomato rootstock effectively promoted the flower and fruit formation in the scion potato and improved its pollen viability by 15%-20%. In addition, a significant negative correlation was observed between the potato tuber yield and pollen viability, suggesting a potential impact on the metabolic regulatory network related to tuber formation. From the comparative transcriptomic analysis between the pollens from Q9 self-grafted plants and Q9-tomato grafting scion, 513 differentially expressed genes (DEGs) were identified. These DEGs were found to be related to gametophyte and pollen development, carbohydrate metabolism, and protein processing. Thus, these DEGs might be involved in improved fertility after reduced tuberization in plants subjected to heterologous grafting. Discussion: Potato/tomato heterologous grafting significantly improved the pollen viability of scion potatoes and was associated with the absence of potato tubers. Heterologous grafting promotes the transcription of genes related to protein processing, carbohydrate metabolism, and pollen development in pollen cells, resulting in the production of fertile pollen. Our results provided initial clues to understanding the improvement of potato fertility using the heterologous grafting method, which might be a useful tool in assisted potato breeding.

2.
Plant Cell ; 36(5): 1755-1776, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38318972

RESUMO

The milestone of compound leaf development is the generation of separate leaflet primordia during the early stages, which involves two linked but distinct morphogenetic events: leaflet initiation and boundary establishment for leaflet separation. Although some progress in understanding the regulatory pathways for each event have been made, it is unclear how they are intrinsically coordinated. Here, we identify the PINNATE-LIKE PENTAFOLIATA2 (PINNA2) gene encoding a newly identified GRAS transcription factor in Medicago truncatula. PINNA2 transcripts are preferentially detected at organ boundaries. Its loss-of-function mutations convert trifoliate leaves into a pinnate pentafoliate pattern. PINNA2 directly binds to the promoter region of the LEAFY orthologue SINGLE LEAFLET1 (SGL1), which encodes a key positive regulator of leaflet initiation, and downregulates its expression. Further analysis revealed that PINNA2 synergizes with two other repressors of SGL1 expression, the BEL1-like homeodomain protein PINNA1 and the C2H2 zinc finger protein PALMATE-LIKE PENTAFOLIATA1 (PALM1), to precisely define the spatiotemporal expression of SGL1 in compound leaf primordia, thereby maintaining a proper pattern of leaflet initiation. Moreover, we showed that the enriched expression of PINNA2 at the leaflet-to-leaflet boundaries is positively regulated by the boundary-specific gene MtNAM, which is essential for leaflet boundary formation. Together, these results unveil a pivotal role of the boundary-expressed transcription factor PINNA2 in regulating leaflet initiation, providing molecular insights into the coordination of intricate developmental processes underlying compound leaf pattern formation.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula , Folhas de Planta , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Morfogênese/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
3.
Plants (Basel) ; 12(4)2023 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-36840167

RESUMO

The mechanism of potato (Solanum tuberosum L.) thermotolerance has been the focus of intensive research for many years because plant growth and tuber yield are highly sensitive to heat stress. However, the linkage between the aerial and belowground parts of potato plants in response to high temperatures is not clear. To disentangle this issue, the aerial and belowground parts of the heat-resistant cultivar Dian187 (D187) and the heat-sensitive cultivar Qingshu 9 (Qs9) were independently exposed to high-temperature (30 °C) conditions using a special incubator. The results indicated that when the belowground plant parts were maintained at a normal temperature, the growth of the aerial plant parts was maintained even when independently exposed to heat stress. In contrast, the treatment that independently exposed the belowground plant parts to heat stress promoted premature senescence in the plant's leaves, even when the aerial plant parts were maintained at a normal temperature. When the aerial part of the plant was independently treated with heat stress, tuberization belowground was not delayed, and tuberization suppression was not as severe as when the belowground plant parts independently underwent heat stress. Heat stress on the belowground plant parts alone had virtually no damaging effects on the leaf photosynthetic system but caused distinct tuber deformation, secondary growth, and the loss of tuber skin colour. Transcriptome analysis revealed that the treatment of the belowground plant parts at 30 °C induced 3361 differentially expressed genes in the Qs9 cultivar's expanding tubers, while the D187 cultivar had only 10,148 differentially expressed genes. Conversely, when only the aerial plant parts were treated at 30 °C, there were just 807 DEGs (differentially expressed genes) in the D187 cultivar's expanding tubers compared with 6563 DEGs in the Qs9 cultivar, indicating that the two cultivars with different heat sensitivities have distinct regulatory mechanisms of tuberization when exposed to heat stress. The information provided in this study may be useful for further exploring the genes associated with high-temperature resistance in potato cultivars.

4.
J Exp Bot ; 72(8): 2995-3011, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33506247

RESUMO

The size of leaf and seed organs, determined by the interplay of cell proliferation and expansion, is closely related to the final yield and quality of forage and crops. Yet the cellular and molecular mechanisms underlying organ size modulation remain poorly understood, especially in legumes. Here, MINI ORGAN1 (MIO1), which encodes an F-box protein SMALL LEAF AND BUSHY1 (SLB1) recently reported to control lateral branching in Medicago truncatula, was identified as a key regulator of organ size. We show that loss-of-function of MIO1/SLB1 severely reduced organ size. Conversely, plants overexpressing MIO1/SLB1 had enlarged organs. Cellular analysis revealed that MIO1/SLB1 controlled organ size mainly by modulating primary cell proliferation during the early stages of leaf development. Biochemical analysis revealed that MIO1/SLB1 could form part of SKP1/Cullin/F-box (SCF) E3 ubiquitin ligase complex, to target BIG SEEDS1 (BS1), a repressor of primary cell division, for degradation. Interestingly, we found that MIO1/SLB1 also played a key role in pulvinus development and leaf movement by modulating cell proliferation of the pulvinus as leaves developed. Our study not only demonstrates a conserved role of MIO1/SLB1 in the control of organ size in legumes, but also sheds light on the novel function of MIO1/SLB1 in leaf movement.


Assuntos
Proteínas F-Box , Medicago truncatula , Proteínas de Plantas , Proteínas Culina/metabolismo , Medicago truncatula/genética , Medicago truncatula/metabolismo , Tamanho do Órgão , Folhas de Planta , Proteínas Ligases SKP Culina F-Box/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
5.
J Exp Bot ; 72(5): 1822-1835, 2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33277994

RESUMO

Plant-specific WOX family transcription factors play important roles ranging from embryogenesis to lateral organ development. The WOX1 transcription factors, which belong to the modern clade of the WOX family, are known to regulate outgrowth of the leaf blade specifically in the mediolateral axis; however, the role of WOX1 in compound leaf development remains unknown. Phylogenetic analysis of the whole WOX family in tomato (Solanum lycopersicum) indicates that there are 10 members that represent the modern, intermediate, and ancient clades. Using phylogenetic analysis and a reverse genetic approach, in this study we identified SlLAM1 in the modern clade and examined its function and tissue-specific expression pattern. We found that knocking out SlLAM1 via CRISPR/Cas9-mediated genome editing led to narrow leaves and a reduced number of secondary leaflets. Overexpression of tomato SlLAM1 could rescue the defects of the tobacco lam1 mutant. Anatomical and transcriptomic analyses demonstrated that floral organ development, fruit size, secondary leaflet initiation, and leaf complexity were altered due to loss-of-function of SlLAM1. These findings demonstrate that tomato SlLAM1 plays an important role in the regulation of secondary leaflet initiation, in addition to its conserved function in blade expansion.


Assuntos
Flores/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas , Solanum lycopersicum , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Plant Mol Biol ; 105(1-2): 193-204, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33037987

RESUMO

KEY MESSAGE: A 3-ketoacyl-CoA synthase involved in biosynthesis of very long chain fatty acids and cuticular wax plays a vital role in aerial organ development in M. truncatula. Cuticular wax is composed of very long chain fatty acids and their derivatives. Defects in cuticular wax often result in organ fusion, but little is known about the role of cuticular wax in compound leaf and flower development in Medicago truncatula. In this study, through an extensive screen of a Tnt1 retrotransposon insertion population in M. truncatula, we identified four mutant lines, named wrinkled flower and leaf (wfl) for their phenotype. The phenotype of the wfl mutants is caused by a Tnt1 insertion in Medtr3g105550, encoding 3-ketoacyl-CoA synthase (KCS), which functions as a rate-limiting enzyme in very long chain fatty acid elongation. Reverse transcription-quantitative PCR showed that WFL was broadly expressed in aerial organs of the wild type, such as leaves, floral organs, and the shoot apical meristem, but was expressed at lower levels in roots. In situ hybridization showed a similar expression pattern, mainly detecting the WFL transcript in epidermal cells of the shoot apical meristem, leaf primordia, and floral organs. The wfl mutant leaves showed sparser epicuticular wax crystals on the surface and increased water permeability compared with wild type. Further analysis showed that in wfl leaves, the percentage of C20:0, C22:0, and C24:0 fatty acids was significantly increased, the amount of cuticular wax was markedly reduced, and wax constituents were altered compared to the wild type. The reduced formation of cuticular wax and wax composition changes on the leaf surface might lead to the developmental defects observed in the wfl mutants. These findings suggest that WFL plays a key role in cuticular wax formation and in the late stage of leaf and flower development in M. truncatula.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Medicago truncatula/metabolismo , Desenvolvimento Vegetal/fisiologia , Proteínas de Plantas/metabolismo , Ceras/metabolismo , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Ácidos Graxos/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Meristema/metabolismo , Conformação Molecular , Mutação , Fenótipo , Desenvolvimento Vegetal/genética , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/citologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Transcriptoma
7.
J Exp Bot ; 71(20): 6355-6365, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32964922

RESUMO

Optimizing plant architecture is an efficient approach for breeders to increase crop yields, and phytohormones such as gibberellins (GAs) play an important role in controlling growth. Medicago truncatula is a model legume species, but the molecular mechanisms underlying its architecture are largely unknown. In this study, we examined a tobacco retrotransposon Tnt1-tagged mutant collection of M. truncatula and identified dwarf and increased branching 1 (dib1), which exhibited extreme dwarfism and increased numbers of lateral branches. By analysis of the flanking sequences of Tnt1 insertions in different alleles of the tagged lines, we were able to clone DIB1. Linkage analysis and reverse screening of the flanking-sequence tags identified Medtr2g102570 as the gene corresponding to the DIB1 locus in the dib1 loss-of-function mutants. Phylogenetic analysis indicated that DIB1 was the ortholog of PsGA3ox1/Le in Pisum sativum. Expression analysis using a GUS-staining reporter line showed that DIB1 was expressed in the root apex, pods, and immature seeds. Endogenous GA4 concentrations were markedly decreased whilst some of representative GA biosynthetic enzymes were up-regulated in the dib1 mutant. In addition, exogenous application of GA3 rescued the dib1 mutant phenotypes. Overall, our results suggest that DIB1 controls plant height and axillary bud outgrowth via an influence on the biosynthesis of bioactive GAs. DIB1 could therefore be a good candidate gene for breeders to optimize plant architecture for crop improvement.


Assuntos
Medicago truncatula , Regulação da Expressão Gênica de Plantas , Giberelinas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Filogenia , Reguladores de Crescimento de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
New Phytol ; 228(3): 1115-1133, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32594537

RESUMO

Male sterility is an important tool for plant breeding and hybrid seed production. Male-sterile mutants are largely due to an abnormal development of either the sporophytic or gametophytic anther tissues. Tapetum, a key sporophytic tissue, provides nutrients for pollen development, and its delayed degeneration induces pollen abortion. Numerous bHLH proteins have been documented to participate in the degeneration of the tapetum in angiosperms, but relatively little attention has been given to the evolution of the involved developmental pathways across the phylogeny of land plants. A combination of cellular, molecular, biochemical and evolutionary analyses was used to investigate the male fertility control in Medicago truncatula. We characterized the male-sterile mutant empty anther1 (ean1) and identified EAN1 as a tapetum-specific bHLH transcription factor necessary for tapetum degeneration. Our study uncovered an evolutionarily conserved recruitment of bHLH subfamily II and III(a + c)1 in the regulation of tapetum degeneration. EAN1 belongs to the subfamily II and specifically forms heterodimers with the subfamily III(a + c)1 members, which suggests a heterodimerization mechanism conserved in angiosperms. Our work suggested that the pathway of two tapetal-bHLH subfamilies is conserved in all land plants, and likely was established before the divergence of the spore-producing land plants.


Assuntos
Medicago truncatula , Anticoncepção , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reprodução
9.
Nat Plants ; 6(5): 511-521, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32393879

RESUMO

Compound leaves show more complex patterns than simple leaves, and this is mainly because of a specific morphogenetic process (leaflet initiation and arrangement) that occurs during their development. How the relevant morphogenetic activity is established and modulated to form a proper pattern of leaflets is a central question. Here we show that the trifoliate leaf pattern of the model leguminous plant Medicago truncatula is controlled by the BEL1-like homeodomain protein PINNATE-LIKE PENTAFOLIATA1 (PINNA1). We identify PINNA1 as a determinacy factor during leaf morphogenesis that directly represses transcription of the LEAFY (LFY) orthologue SINGLE LEAFLET1 (SGL1), which encodes an indeterminacy factor key to the morphogenetic activity maintenance. PINNA1 functions alone in the terminal leaflet region and synergizes with another determinacy factor, the C2H2 zinc finger protein PALMATE-LIKE PENTAFOLIATA1 (PALM1), in the lateral leaflet regions to define the spatiotemporal expression of SGL1, leading to an elaborate control of morphogenetic activity. This study reveals a framework for trifoliate leaf-pattern formation and sheds light on mechanisms generating diverse leaf forms.


Assuntos
Medicago truncatula/metabolismo , Folhas de Planta/metabolismo , Western Blotting , Ensaio de Desvio de Mobilidade Eletroforética , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/fisiologia , Hibridização In Situ , Medicago truncatula/anatomia & histologia , Medicago truncatula/crescimento & desenvolvimento , Filogenia , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Nicotiana
10.
Nat Commun ; 11(1): 2494, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427850

RESUMO

Artificially improving traits of cultivated alfalfa (Medicago sativa L.), one of the most important forage crops, is challenging due to the lack of a reference genome and an efficient genome editing protocol, which mainly result from its autotetraploidy and self-incompatibility. Here, we generate an allele-aware chromosome-level genome assembly for the cultivated alfalfa consisting of 32 allelic chromosomes by integrating high-fidelity single-molecule sequencing and Hi-C data. We further establish an efficient CRISPR/Cas9-based genome editing protocol on the basis of this genome assembly and precisely introduce tetra-allelic mutations into null mutants that display obvious phenotype changes. The mutated alleles and phenotypes of null mutants can be stably inherited in generations in a transgene-free manner by cross pollination, which may help in bypassing the debate about transgenic plants. The presented genome and CRISPR/Cas9-based transgene-free genome editing protocol provide key foundations for accelerating research and molecular breeding of this important forage crop.


Assuntos
Cromossomos de Plantas/genética , Edição de Genes/métodos , Genoma de Planta/genética , Medicago sativa/genética , Tetraploidia , Transgenes/genética , Alelos , Sistemas CRISPR-Cas , Produtos Agrícolas/genética , Mutação , Fenótipo , Melhoramento Vegetal/métodos
11.
Rice (N Y) ; 12(1): 60, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31396773

RESUMO

BACKGROUND: ARGONAUTE 1 (AGO1) proteins can recruit small RNAs to regulate gene expression, involving several growth and development processes in Arabidopsis. Rice genome contains four AGO1 genes, OsAGO1a to OsAGO1d. However, the regulatory functions to rice growth and development of each AGO1 gene are still unknown. RESULTS: We obtained overexpression and RNAi transgenic lines of each OsAGO1 gene. However, only up- and down-regulation of OsAGO1b caused multiple abnormal phenotypic changes in rice, indicating that OsAGO1b is the key player in rice growth and organ development compared with other three OsAGO1s. qRT-PCR assays showed that OsAGO1b was almost unanimously expressed in leaves at different developmental stages, and strongly expressed in spikelets at S1 to S3 stages. OsAGO1b is a typical AGO protein, and co-localized in both the nucleus and cytoplasm simultaneously. Overexpression of OsAGO1b caused adaxially rolled leaves and a series of abnormal phenotypes, such as the reduced tiller number and plant height. Knockdown lines of OsAGO1b showed almost normal leaves, but the seed setting percentage was significantly reduced accompanied by the disturbed anther patterning and reduced pollen fertility. Further anatomical observation revealed that OsAGO1b overexpression plants showed the partially defective development of sclerenchymatous cells on the abaxial side of leaves. In situ hybridization showed OsAGO1b mRNA was uniformly accumulated in P1 to P3 primordia without polarity property, suggesting OsAGO1b did not regulate the adaxial-abaxial polarity development directly. The expression levels of several genes related to leaf polarity development and vascular bundle differentiation were observably changed. Notably, the accumulation of miR166 and TAS3-siRNA was decreased, and their targeted OSHBs and OsARFs were significantly up-regulated. The mRNA distribution patterns of OSHB3 and OsARF4 in leaves remained almost unchanged between ZH11 and OsAGO1b overexpression lines, but their expression levels were enhanced at the regions of vascular bundles and sclerenchymatous cell differentiation. CONCLUSIONS: In summary, we demonstrated OsAGO1b is the leading player among four OsAGO1s in rice growth and development. We propose that OsAGO1b may regulate the abaxial sclerenchymatous cell differentiation by affecting the expression of OSHBs in rice.

12.
Ying Yong Sheng Tai Xue Bao ; 25(2): 401-7, 2014 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-24830239

RESUMO

The heterogeneity of species composition is one of the main attributes in weed community dynamics. Based on species frequency and power law, this paper studied the variations of weed community species composition and spatial heterogeneity in a Zoysia matrella lawn in Guangzhou at different time. The results showed that there were 43 weed species belonging to 19 families in the Z. matrella lawn from 2007 to 2009, in which Gramineae, Compositae, Cyperaceae and Rubiaceae had a comparative advantage. Perennial weeds accounted for the largest proportion of weeds and increased gradually in the three years. Weed communities distributed in higher heterogeneity than in a random model. Dominant weeds varied with season and displayed regularity in the order of 'dicotyledon-monocotyledon-dicotyledon weeds' and 'perennial-annual-perennial weeds'. The spatial heterogeneity of weed community in Z. matrella lawn was higher in summer than in winter. The diversity and evenness of weed community were higher in summer and autumn than in winter and spring. The number of weed species with high heterogeneity in summer was higher than in the other seasons. The spatial heterogeneity and diversity of weed community had no significant change in the three years, while the evenness of weed community had the tendency to decline gradually.


Assuntos
Plantas Daninhas/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Estações do Ano , Análise Espaço-Temporal
13.
J Genet ; 93(1): 145-58, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24840831

RESUMO

Lignin is a major constituent of plant cell walls and indispensable to the normal growth of a plant. However, the presence of lignin complicates the structure of the plant cell walls and negatively influences pulping industry, lignocellulose utilization as well as forage properties. Cinnamyl alcohol dehydrogenase (CAD), a key enzyme involved in lignin biosynthesis, catalyses the last step in monolignol synthesis and has a major role in genetic regulation of lignin production. In the present study, a 1 342-bp cDNA fragment of CAD gene, named PpCAD, was isolated from Pennisetum purpureum using strategies of homologous clone and rapid amplification of cDNA end. It was translated into an intact protein sequence including 366 amino acid residues by ORF Finder. The genomic full-length DNA of PpCAD was a 3 738-bp sequence containing four exons and three introns, among which the 114-bp exon was considered to be a conserved region compared with other CADs. Basic bioinformatic analysis presumed that the PpCAD was a nonsecretory and hydrophobic protein with five possible transmembrane helices. The phylogenetic analysis indicated that the PpCAD belonged to the class of bona fide CADs involved in lignin synthesis and it showed a high similarity (nearly 90%) with CAD protein sequences of Sorghum bicolor, Panicum virgatum and Zea mays in Gramineae. Furthere, PpCAD amino acid sequence was demonstrated to have some conserved motifs such as Zn-binding site, Zn-catalytic centre and NADP(H) binding domain after aligning with other bona fide CADs. Three-dimensional homology modelling of PpCAD showed that the protein had some exclusive features of bona fide CADs.


Assuntos
Oxirredutases do Álcool/genética , Clonagem Molecular , Biologia Computacional , Pennisetum/genética , Sequência de Aminoácidos , Domínio Catalítico , Éxons , Ordem dos Genes , Genes de Plantas , Íntrons , Modelos Moleculares , Dados de Sequência Molecular , Família Multigênica , Filogenia , Conformação Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
14.
J Surg Res ; 188(1): 174-82, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24411301

RESUMO

BACKGROUND: Inflammatory pain is one of the most common clinical symptoms, mechanical allodynia and thermal hypersensitivities are associated with proinflammatory cytokines, and proinflammatory cytokine antagonists could alleviate the hypersensitivity. Previous studies showed that a traditional Chinese medicine ingredient, triptolide could inhibit inflammatory cytokines; however, it was still unknown whether triptolide had beneficial effects on treating inflammatory pain. MATERIALS AND METHODS: The effects of triptolide on Complete Freund's Adjuvant-induced acute inflammatory pain were investigated using behavioral tests. The activation of spinal glia was morphologically observed by immunofluorescent histochemistry. The levels of OX42, glia fibrillary acidic protein, and phosphorylated extracellular signal-regulated kinase in the spinal cord were detected by Western blot, and the messenger RNA levels of interleukin 1ß, interleukin 6, and tumor necrosis factor alpha were detected by real-time polymerase chain reaction. RESULTS: These results demonstrate that the triptolide effectively attenuates inflammatory pain induced by Complete Freund's Adjuvant, the underlying mechanism may regulate the phosphorylated extracellular signal-regulated kinase signaling pathway and inhibit the spinal glia activation, and then downregulate the proinflammatory cytokines; the triptolide may be clinically useful as a drug of anti-inflammatory pain. CONCLUSIONS: In the present study, we first reported that repeated systemic administration of triptolide could safely prevent and reverse inflammatory pain. The triptolide may serve as a new potential compound for developing safe therapeutics for patients suffering inflammatory pain.


Assuntos
Dor Aguda/tratamento farmacológico , Diterpenos/uso terapêutico , Imunossupressores/uso terapêutico , Neuroglia/efeitos dos fármacos , Fenantrenos/uso terapêutico , Dor Aguda/induzido quimicamente , Animais , Citocinas/metabolismo , Diterpenos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática , Compostos de Epóxi/farmacologia , Compostos de Epóxi/uso terapêutico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Adjuvante de Freund , Imunossupressores/farmacologia , Inflamação/tratamento farmacológico , Mediadores da Inflamação/metabolismo , Masculino , Fenantrenos/farmacologia , Fitoterapia , Extratos Vegetais/uso terapêutico , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA