Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2400933, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801772

RESUMO

Photodynamic therapy (PDT) continues to encounter multifarious hurdles, stemming from the ineffectual preservation and delivery system of photosensitizers, the dearth of imaging navigation, and the antioxidant/hypoxic tumor microenvironment. Herein, a versatile cryomicroneedle patch (denoted as CMN-CCPH) was developed for traceable PDT. The therapeutic efficacy was further amplified by catalase (CAT)-induced oxygen (O2) generation and Cu2+-mediated glutathione (GSH) depletion. The CMN-CCPH is composed of cryomicroneedle (CMN) as the vehicle and CAT-biomineralized copper phosphate nanoflowers (CCP NFs) loaded with hematoporphyrin monomethyl ether (HMME) as the payload. Importantly, the bioactive function of HMME and CAT could be optimally maintained under the protection of CCPH and CMN for a duration surpassing 60 days, leading to a bolstered bioavailability and notable enhancements in PDT efficacy. The in vivo visualization of HMME and oxyhemoglobin saturation (sO2) monitored by fluorescence (FL)/photoacoustic (PA) duplex real-time imaging unveiled the noteworthy implications of CMN-delivered CCPH for intratumoral enrichment of HMME and O2 with reduced systemic toxicity. This versatile CMN patch demonstrated distinct effectiveness in neoplasm elimination, underscoring its promising clinical prospects. This article is protected by copyright. All rights reserved.

2.
Small ; : e2309026, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477698

RESUMO

Hypoxic tumor microenvironment (TME) hampers the application of oxygen (O2 )-dependent photodynamic therapy (PDT) in solid tumors. To address this problem, a biomimetic nanotheranostics (named MMCC@EM) is developed for optical molecular imaging-escorted self-oxygenation PDT. MMCC@EM is synthesized by encapsulating chlorin e6 (Ce6) and catalase (CAT) in metal-organic framework (MOF) nanoparticles with erythrocyte membrane (EM) camouflage. Based on the biomimetic properties of EM, MMCC@EM efficiently accumulates in tumor tissues. The enriched MMCC@EM achieves TME-activatable drug release, thereby releasing CAT and Ce6, and this process can be monitored through fluorescence (FL) imaging. In addition, endogenous hydrogen peroxide (H2 O2 ) will be decomposed by CAT to produce O2 , which can be reflected by the measurement of intratumoral oxygen concentration using photoacoustic (PA) imaging. Such self-oxygenation nanotheranostics effectively mitigate tumor hypoxia and improve the generation of singlet oxygen (1 O2 ). The 1 O2 disrupts mitochondrial function and triggers caspase-3-mediated cellular apoptosis. Furthermore, MMCC@EM triggers immunogenic cell death (ICD) effect, leading to an increased infiltration of cytotoxic T lymphocytes (CTLs) into tumor tissues. As a result, MMCC@EM exhibits good therapeutic effects in 4T1-tumor bearing mice under the navigation of FL/PA duplex imaging.

3.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27175014

RESUMO

BACKGROUND: The N-methyl-D-aspartate subtype of glutamate receptor plays a critical role in morphine tolerance. D-serine, a co-agonist of N-methyl-D-aspartate receptor, participates in many physiological and pathophysiological processes via regulating N-methyl-D-aspartate receptor activation. The purinergic P2X7 receptor activation can induce the D-serine release in the central nervous system. This study aimed to investigate the role of the ventrolateral midbrain periaqueductal gray D-serine in the mechanism of morphine tolerance in rats. The development of morphine tolerance was induced in normal adult male Sprague-Dawley rats through subcutaneous injection of morphine (10 mg/kg). The analgesic effect of morphine (5 mg/kg, i.p.) was assessed by measuring mechanical withdrawal thresholds in rats with an electronic von Frey anesthesiometer. The D-serine concentration and serine racemase expression levels in the ventrolateral midbrain periaqueductal gray were evaluated through enzyme-linked immunosorbent assay and Western blot analysis, respectively. The effects of intra-ventrolateral midbrain periaqueductal gray injections of the D-serine degrading enzyme D-amino acid oxidase and antisense oligodeoxynucleotide targeting the P2X7 receptor on chronic morphine-treated rats were also explored. RESULTS: We found that repeated morphine administrations decreased the antinociceptive potency of morphine evidenced by the percent changes in mechanical pain threshold in rats. By contrast, the D-serine contents and the expression levels of the serine racemase protein were upregulated in the ventrolateral midbrain periaqueductal gray in morphine-tolerant rats. The development of morphine tolerance was markedly alleviated by intra-ventrolateral midbrain periaqueductal gray injections of D-amino acid oxidase or antisense oligodeoxynucleotide targeting the P2X7 receptor. CONCLUSIONS: Our data indicate that the development of antinociceptive tolerance to morphine is partially mediated by ventrolateral midbrain periaqueductal gray D-serine content, and the activation of the ventrolateral midbrain periaqueductal gray P2X7 receptor is an essential prelude to D-serine release. These results suggest that a cascade involving P2X7 receptor-D-serine-N-methyl-D-aspartate receptor mediated signaling pathway in the supraspinal mechanism of morphine tolerance.


Assuntos
Tolerância a Medicamentos , Morfina/farmacologia , Substância Cinzenta Periaquedutal/metabolismo , Serina/metabolismo , Analgesia , Animais , D-Aminoácido Oxidase/metabolismo , Masculino , Microinjeções , Morfina/administração & dosagem , Oligodesoxirribonucleotídeos/farmacologia , Limiar da Dor/efeitos dos fármacos , Racemases e Epimerases/metabolismo , Ratos Sprague-Dawley , Receptores Purinérgicos P2X7/metabolismo , Regulação para Cima/efeitos dos fármacos
4.
Pharmacol Biochem Behav ; 135: 145-53, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26054441

RESUMO

Opiates such as morphine exhibit analgesic effect in various pain models, but repeated and chronic morphine administration may develop resistance to antinociception. The purinergic signaling system is involved in the mechanisms of pain modulation and morphine tolerance. This study aimed to determine whether the P2X7 receptor in the ventrolateral midbrain periaqueductal gray (vlPAG) is involved in morphine tolerance. Development of tolerance to the antinociceptive effect of morphine was induced in normal adult male Sprague-Dawley (SD) rats through subcutaneous injection of morphine (10mg/kg). The analgesic effect of morphine (5mg/kg, i.p.) was assessed by measuring mechanical withdrawal thresholds (MWTs) in rats with an electronic von Frey anesthesiometer. The expression levels and distribution of the P2X7 receptor in the vlPAG was evaluated through Western blot analysis and immunohistochemistry. The acute effects of intra-vlPAG injection of the selective P2X7 receptor agonist Bz-ATP, the selective P2X7 receptor antagonist A-740003, or antisense oligodeoxynucleotide (AS ODN) targeting the P2X7 receptor on morphine-treated rats were also observed. Results demonstrated that repeated morphine administration decreased the mechanical pain thresholds. By contrast, the expression of the P2X7 receptor protein was up-regulated in the vlPAG in morphine tolerant rats. The percent changes in MWT were markedly but only transiently attenuated by intra-vlPAG injection of Bz-ATP (9nmol/0.3µL) but elevated by A-740003 at doses of 10 and 100nmol/0.3µL. AS ODN (15nmol/0.3µL) against the P2X7 receptor reduced the development of chronic morphine tolerance in rats. These results suggest that the development of antinociceptive tolerance to morphine is partially mediated by activating the vlPAG P2X7 receptors. The present data also suggest that the P2X7 receptors may be a therapeutic target for improving the analgesic effect of morphine in treatments of pain when morphine tolerance occurs.


Assuntos
Mesencéfalo/efeitos dos fármacos , Morfina/farmacologia , Entorpecentes/farmacologia , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Agonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/efeitos dos fármacos , Acetamidas/farmacologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Tolerância a Medicamentos , Masculino , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Medição da Dor/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Quinolinas/farmacologia , Ratos , Ratos Sprague-Dawley , Síndrome de Abstinência a Substâncias/psicologia
5.
Pharmacol Biochem Behav ; 127: 49-55, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25450118

RESUMO

The 5-HT7 receptor is the most recently discovered receptor for 5-hydroxytryptamine (5-HT), and only little is known about the analgesic potential of this receptor. Adenosine triphosphate (ATP) modulates pain transmission by activating P2X/P2Y receptors, in which the P2X3 subtype is an important target for this effect. This study examined the antihyperalgesic effect of the 5-HT7 receptors in the ventrolateral midbrain periaqueductal gray (vlPAG), a crucial site for endogenous pain inhibition. This study also explored the importance of the interactions between the 5-HT7 and P2X3 receptors in this effect. To address this issue, neuropathic pain was induced through chronic constriction injury (CCI) of the sciatic nerve in Sprague-Dawley (SD) rats. The expression level and distribution of the 5-HT7 receptor were evaluated through Western blot and immunohistochemistry. The mechanical withdrawal threshold (MWT) was measured by using an electronic pressure meter test. Different doses (3, 6, and 12µmol) of AS-19, a selective agonist of the 5-HT7 receptor, were administered in the vlPAG of CCI rats. The effects of pretreatment with the selective 5-HT7 receptor antagonist SB-269970 or the selective P2X3 receptor antagonist A-317491 on the analgesic effect of AS-19 were observed. Results showed that CCI decreased the MWT values of the rats. The injury also increased the protein level of the 5-HT7 receptor in the vlPAG of neuropathic pain rats. AS-19 microinjection significantly elevated the MWT values in a dose-dependent manner, but SB-269970 pretreatment attenuated the antihyperalgesic effect of AS-19. Furthermore, the antihyperalgesic effect of the 5-HT7 receptor was partially but significantly blocked by A-317491 pretreatment. These data indicate that the 5-HT7 receptor in the vlPAG exerts an antihyperalgesic effect on rats with neuropathic pain. The 5-HT7 and P2X3 receptors interact in the vlPAG and exhibit an analgesic action through the enhanced function of the endogenous analgesic system.


Assuntos
Analgésicos/uso terapêutico , Modelos Animais de Doenças , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Substância Cinzenta Periaquedutal/metabolismo , Receptores de Serotonina/metabolismo , Analgésicos/farmacologia , Animais , Hiperalgesia/tratamento farmacológico , Masculino , Neuralgia/tratamento farmacológico , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Ratos , Ratos Sprague-Dawley , Tetra-Hidronaftalenos/farmacologia , Tetra-Hidronaftalenos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA