Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Biomacromolecules ; 25(5): 3055-3062, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38693874

RESUMO

Polymersomes, nanosized polymeric vesicles, have attracted significant interest in the areas of artificial cells and nanomedicine. Given their size, their visualization via confocal microscopy techniques is often achieved through the physical incorporation of fluorescent dyes, which however present challenges due to potential leaching. A promising alternative is the incorporation of molecules with aggregation-induced emission (AIE) behavior that are capable of fluorescing exclusively in their assembled state. Here, we report on the use of AIE polymersomes as artificial organelles, which are capable of undertaking enzymatic reactions in vitro. The ability of our polymersome-based artificial organelles to provide additional functionality to living cells was evaluated by encapsulating catalytic enzymes such as a combination of glucose oxidase/horseradish peroxidase (GOx/HRP) or ß-galactosidase (ß-gal). Via the additional incorporation of a pyridinium functionality, not only the cellular uptake is improved at low concentrations but also our platform's potential to specifically target mitochondria expands.


Assuntos
Glucose Oxidase , Peroxidase do Rábano Silvestre , beta-Galactosidase , Glucose Oxidase/química , Humanos , beta-Galactosidase/química , beta-Galactosidase/metabolismo , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Organelas/metabolismo , Corantes Fluorescentes/química , Polímeros/química , Fluorescência , Células HeLa , Mitocôndrias/metabolismo
2.
Biomacromolecules ; 25(5): 3044-3054, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38662992

RESUMO

Photodynamic therapy (PDT) has demonstrated efficacy in eliminating local tumors, yet its effectiveness against metastasis is constrained. While immunotherapy has exhibited promise in a clinical context, its capacity to elicit significant systemic antitumor responses across diverse cancers is often limited by the insufficient activation of the host immune system. Consequently, the combination of PDT and immunotherapy has garnered considerable attention. In this study, we developed pH-responsive porphyrin-peptide nanosheets with tumor-targeting capabilities (PRGD) that were loaded with the IDO inhibitor NLG919 for a dual application involving PDT and immunotherapy (PRGD/NLG919). In vitro experiments revealed the heightened cellular uptake of PRGD/NLG919 nanosheets in tumor cells overexpressing αvß3 integrins. The pH-responsive PRGD/NLG919 nanosheets demonstrated remarkable singlet oxygen generation and photocytotoxicity in HeLa cells in an acidic tumor microenvironment. When treating HeLa cells with PRGD/NLG919 nanosheets followed by laser irradiation, a more robust adaptive immune response occurred, leading to a substantial proliferation of CD3+CD8+ T cells and CD3+CD4+ T cells compared to control groups. Our pH-responsive targeted PRGD/NLG919 nanosheets therefore represent a promising nanosystem for combination therapy, offering effective PDT and an enhanced host immune response.


Assuntos
Imunoterapia , Nanoestruturas , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Concentração de Íons de Hidrogênio , Imunoterapia/métodos , Nanoestruturas/química , Células HeLa , Animais , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Camundongos , Peptídeos/química , Peptídeos/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Porfirinas/química , Porfirinas/farmacologia , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia , Imidazóis , Isoindóis
3.
Biochem Biophys Res Commun ; 711: 149911, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38603832

RESUMO

Macrophages play a crucial role in host response and wound healing, with M2 polarization contributing to the reduction of foreign-body reactions induced by the implantation of biomaterials and promoting tissue regeneration. Electrical stimulation (ES) and micropatterned substrates have a significant impact on the macrophage polarization. However, there is currently a lack of well-established cell culture platforms for studying the synergistic effects of these two factors. In this study, we prepared a graphene free-standing substrate with 20 µm microgrooves using capillary forces induced by water evaporation. Subsequently, we established an ES cell culture platform for macrophage cultivation by integrating a self-designed multi-well chamber cell culture device. We observed that graphene microgrooves, in combination with ES, significantly reduce cell spreading area and circularity. Results from immunofluorescence, ELISA, and flow cytometry demonstrate that the synergistic effect of graphene microgrooves and ES effectively promotes macrophage M2 phenotypic polarization. Finally, RNA sequencing results reveal that the synergistic effects of ES and graphene microgrooves inhibit the macrophage actin polymerization and the downstream PI3K signaling pathway, thereby influencing the phenotypic transition. Our results demonstrate the potential of graphene-based microgrooves and ES to synergistically modulate macrophage polarization, offering promising applications in regenerative medicine.


Assuntos
Estimulação Elétrica , Grafite , Macrófagos , Grafite/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Animais , Camundongos , Células RAW 264.7 , Polaridade Celular/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
4.
Adv Sci (Weinh) ; 11(18): e2400361, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38447144

RESUMO

Precise and timely recognition of hazardous chemical substances is of great significance for safeguarding human health, ecological environment, public security, etc., especially crucial for adopting appropriate disposition measures. Up to now, there remains a practical challenge to sensitively detect and differentiate organic amines with similar chemical structures with intuitive analysis outcomes. Here, a unique optical probe with two electrophilic recognition sites for rapid and ultra-sensitive ratiometric fluorescence detection of ethylenediamine (EDA) is presented, while producing distinct fluorescence signals to its structural analog. The probe exhibits ppb/nmol level sensitivity to liquidous and gaseous EDA, specific recognition toward EDA without disturbance to up to 28 potential interferents, as well as rapid fluorescence response within 0.2 s. By further combining the portable sensing chip with the convolutional algorithm endowed with image processing, this work cracked the problem of precisely discriminating the target and non-targets at extremely low concentrations.

5.
Langmuir ; 40(12): 6582-6586, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38477650

RESUMO

We investigate a subfreezing droplet impact scenario in a low-humidity environment, where the target is a cold granular monolayer. When the undercooling degree of targets passes a threshold, such a granular layer effectively postpones the bulk freezing time of the droplet in comparison with the impact on the bare substrate underneath. In this case, the retraction of the droplet after impact reduces the contact area with the cold substrate, even though both the grains and the substrate are wettable to the liquid. We find that the significant changes in the dynamic behavior are triggered by freezing the liquid that wets the pores. Owing to the small dimension of the pores, the freezing process is rapid enough to match the dynamics over the droplet dimension. In certain circumstances, the rapid freezing may even stop liquid penetration and shed icing from the surface underneath.

6.
Anal Methods ; 16(15): 2301-2310, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38529837

RESUMO

Highly efficient detection of environmental residual potentially toxic species is of concern worldwide as their presence in an excessive amount would greatly endanger the health of human beings as well as environmental sustainability. The solvation effect is a critical factor to be considered for understanding chemical reaction progress as well as the photophysical behaviors of substances and thus is promising for visualized detection of metal ions. Herein, by applying 5-amino-1,10-phenanthroline (APT) as the optical probe, a sensing strategy was proposed based on the solvation effect modulated complexation of APT towards different metal ions to achieve the visualized discrimination of four critical ions (Cu(II), Zn(II), Cd(II), and Al(III)). How the crucial intrinsic properties of the solvent (e.g., polarity, solvent free energy, and electrostatic potential) influenced the complexation and the product emission was clarified, and the detection performances were systematically evaluated with detection limits as low as the nM level and good recognition selectivity. Furthermore, a portable sensing chip was developed with potential for highly efficient analysis in complicated scenes; thus, this strategy offers a new insight into determining multiple metal ions or other critical substances upon solvation manipulation.

7.
Mol Cancer ; 23(1): 62, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38519953

RESUMO

While strategies such as chemotherapy and immunotherapy have become the first-line standard therapies for patients with advanced or metastatic cancer, acquired resistance is still inevitable in most cases. The introduction of antibody‒drug conjugates (ADCs) provides a novel alternative. ADCs are a new class of anticancer drugs comprising the coupling of antitumor mAbs with cytotoxic drugs. Compared with chemotherapeutic drugs, ADCs have the advantages of good tolerance, accurate target recognition, and small effects on noncancerous cells. ADCs occupy an increasingly important position in the therapeutic field. Currently, there are 13 Food and Drug Administration (FDA)‒approved ADCs and more than 100 ADC drugs at different stages of clinical trials. This review briefly describes the efficacy and safety of FDA-approved ADCs, and discusses the related problems and challenges to provide a reference for clinical work.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Estados Unidos , Humanos , Imunoconjugados/uso terapêutico , United States Food and Drug Administration , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resultado do Tratamento
8.
Opt Express ; 32(4): 6277-6290, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439335

RESUMO

In this study, a novel method that can detect carbon dioxide (CO2) concentration and realize temperature immunity based on only one fiber Bragg grating (FBG) is proposed. The outstanding contribution lies in solving the temperature crosstalk issue of FBG and ensuring the accuracy of detection results under the condition of anti-temperature interference. To achieve immunity to temperature interference without changing the initial structure of FBG, the optical fiber cladding of FBG and adjacent optical fiber cladding at both ends of FBG are modified by a polymer coating. Moreover, a universal immune temperature demodulation algorithm is derived. The experimental results demonstrate that the temperature response sensitivity of the improved FBG is controlled within the range of 0.00407 nm/°C. Compared with the initial FBG (the temperature sensitivity of the initial FBG is 0.04 nm/°C), it decreases by nearly 10 times. Besides, the gas response sensitivity of FBG reaches 1.6 pm/ppm and has overwhelmingly ideal linearity. The detection error results manifest that the gas concentration error in 20 groups of data does not exceed 3.16 ppm. The final reproducibility research shows that the difference in detection sensitivity between the two sensors is 0.08 pm/ppm, and the relative error of linearity is 1.07%. In a word, the proposed method can accurately detect the concentration of CO2 gas and is efficiently immune to temperature interference. The sensor we proposed has the advantages of a simple production process, low cost, and satisfactory reproducibility. It also has the prospect of mass production.

9.
Chin J Cancer Res ; 36(1): 55-65, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38455369

RESUMO

Objective: Despite cardiotoxicity overlap, the trastuzumab/pertuzumab and anthracycline combination remains crucial due to significant benefits. Pegylated liposomal doxorubicin (PLD), a less cardiotoxic anthracycline, was evaluated for efficacy and cardiac safety when combined with cyclophosphamide and followed by taxanes with trastuzumab/pertuzumab in human epidermal growth factor receptor-2 (HER2)-positive early breast cancer (BC). Methods: In this multicenter, phase II study, patients with confirmed HER2-positive early BC received four cycles of PLD (30-35 mg/m2) and cyclophosphamide (600 mg/m2), followed by four cycles of taxanes (docetaxel, 90-100 mg/m2 or nab-paclitaxel, 260 mg/m2), concomitant with eight cycles of trastuzumab (8 mg/kg loading dose, then 6 mg/kg) and pertuzumab (840 mg loading dose, then 420 mg) every 3 weeks. The primary endpoint was total pathological complete response (tpCR, ypT0/is ypN0). Secondary endpoints included breast pCR (bpCR), objective response rate (ORR), disease control rate, rate of breast-conserving surgery (BCS), and safety (with a focus on cardiotoxicity). Results: Between May 27, 2020 and May 11, 2022, 78 patients were treated with surgery, 42 (53.8%) of whom had BCS. After neoadjuvant therapy, 47 [60.3%, 95% confidence interval (95% CI), 48.5%-71.2%] patients achieved tpCR, and 49 (62.8%) achieved bpCR. ORRs were 76.9% (95% CI, 66.0%-85.7%) and 93.6% (95% CI, 85.7%-97.9%) after 4-cycle and 8-cycle neoadjuvant therapy, respectively. Nine (11.5%) patients experienced asymptomatic left ventricular ejection fraction (LVEF) reductions of ≥10% from baseline, all with a minimum value of >55%. No treatment-related abnormal cardiac function changes were observed in mean N-terminal pro-BNP (NT-proBNP), troponin I, or high-sensitivity troponin. Conclusions: This dual HER2-blockade with sequential polychemotherapy showed promising activity with rapid tumor regression in HER2-positive BC. Importantly, this regimen showed an acceptable safety profile, especially a low risk of cardiac events, suggesting it as an attractive treatment approach with a favorable risk-benefit balance.

10.
J Virol ; 98(3): e0140123, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38358287

RESUMO

Since 2020, clade 2.3.4.4b highly pathogenic avian influenza H5N8 and H5N1 viruses have swept through continents, posing serious threats to the world. Through comprehensive analyses of epidemiological, genetic, and bird migration data, we found that the dominant genotype replacement of the H5N8 viruses in 2020 contributed to the H5N1 outbreak in the 2021/2022 wave. The 2020 outbreak of the H5N8 G1 genotype instead of the G0 genotype produced reassortment opportunities and led to the emergence of a new H5N1 virus with G1's HA and MP genes. Despite extensive reassortments in the 2021/2022 wave, the H5N1 virus retained the HA and MP genes, causing a significant outbreak in Europe and North America. Furtherly, through the wild bird migration flyways investigation, we found that the temporal-spatial coincidence between the outbreak of the H5N8 G1 virus and the bird autumn migration may have expanded the H5 viral spread, which may be one of the main drivers of the emergence of the 2020-2022 H5 panzootic.IMPORTANCESince 2020, highly pathogenic avian influenza (HPAI) H5 subtype variants of clade 2.3.4.4b have spread across continents, posing unprecedented threats globally. However, the factors promoting the genesis and spread of H5 HPAI viruses remain unclear. Here, we found that the spatiotemporal genotype replacement of H5N8 HPAI viruses contributed to the emergence of the H5N1 variant that caused the 2021/2022 panzootic, and the viral evolution in poultry of Egypt and surrounding area and autumn bird migration from the Russia-Kazakhstan region to Europe are important drivers of the emergence of the 2020-2022 H5 panzootic. These findings provide important targets for early warning and could help control the current and future HPAI epidemics.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Animais , Aves , Genótipo , Vírus da Influenza A/fisiologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/fisiologia , Vírus da Influenza A Subtipo H5N8/genética , Vírus da Influenza A Subtipo H5N8/fisiologia , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Filogenia , Aves Domésticas
11.
BMC Womens Health ; 24(1): 87, 2024 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310239

RESUMO

BACKGROUND: Approximately 50% of breast mucinous carcinomas (MCs) are oval and have the possibility of being misdiagnosed as fibroadenomas (FAs). We aimed to identify the key features that can help differentiate breast MC with an oval shape from FA on ultrasonography (US). METHODS: Seventy-six MCs from 71 consecutive patients and 50 FAs with an oval shape from 50 consecutive patients were included in our study. All lesions pathologically diagnosed. According to the Breast Imaging Reporting and Data System (BI-RADS), first, the ultrasonographic features of the MCs and FAs were recorded and a final category was assessed. Then, the differences in ultrasonographic characteristics between category 4 A (low-risk group) and category 4B-5 (medium-high- risk group) MCs were identified. Finally, other ultrasonographic features of MC and FA both with an oval shape were compared to determine the key factors for differential diagnosis. The Mann-Whitney test, χ2 test or Fisher's exact test was used to compare data between groups. RESULTS: MCs with an oval shape (81.2%) and a circumscribed margin (25%) on US were more commonly assessed in the low-risk group (BI-RADS 4 A) than in the medium-high-risk group (BI-RADS 4B-5) (20%, p < 0.001 and 0%, p = 0.001, respectively). Compared with those with FA, patients with MC were older, and tended to have masses with non-hypoechoic patterns, not circumscribed margins, and a posterior echo enhancement on US (p < 0.001, p < 0.001, and p = 0.003, respectively). CONCLUSION: The oval shape was the main reason for the underestimation of MCs. On US, an oval mass found in the breast of women of older age with non-hypoechoic patterns, not circumscribed margins, and a posterior echo enhancement was associated with an increased risk of being an MC, and should be subjected to active biopsy.


Assuntos
Adenocarcinoma Mucinoso , Neoplasias da Mama , Fibroadenoma , Feminino , Humanos , Diagnóstico Diferencial , Fibroadenoma/diagnóstico , Ultrassonografia Mamária/métodos , Neoplasias da Mama/diagnóstico , Adenocarcinoma Mucinoso/diagnóstico por imagem , Estudos Retrospectivos
12.
Proc Natl Acad Sci U S A ; 121(2): e2311930121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38175861

RESUMO

When making contact with an undercooled target, a drop freezes. The colder the target is, the more rapid the freezing is supposed to be. In this research, we explore the impact of droplets on cold granular material. As the undercooling degree increases, the bulk freezing of the droplet is delayed by at least an order of magnitude. The postponement of the overall solidification is accompanied by substantial changes in dynamics, including the spreading-retraction process, satellite drop generation, and cratering in the target. The solidification of the wetted pores in the granular target primarily causes these effects. The freezing process over the pore dimension occurs rapidly enough to match the characteristic timescales of impact dynamics at moderate undercooling degrees. As a result, the hydrophilic impact appears "hydrophobic," and the dimension of the solidified droplet shrinks. A monolayer of cold grains on a surface can reproduce these consequences. Our research presents a potential approach to regulate solidified morphology for subfreezing drop impacts. It additionally sheds light on the impact scenario of strong coupling between the dynamics and solidification.

13.
ACS Sustain Chem Eng ; 12(2): 666-679, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38239432

RESUMO

Improving the odds and pace of successful biomass and waste carbon utilization technology scale-up is crucial to decarbonizing key industries such as aviation and materials within timelines required to meet global climate goals. In this perspective, we review deficiencies commonly encountered during scale-up to show that many nascent technology developers place too much focus on simply demonstrating that technologies work in progressively larger units ("profit") without expending enough up-front research effort to identify and derisk roadblocks to commercialization (collecting "information") to inform the design of these units. We combine this conclusion with economic and timeline data collected from technology scale-up and piloting operations at the National Renewable Energy Laboratory (NREL) to motivate a more scientific, risk-minimized approach to biomass and waste carbon upgrading scale-up. Our proposed approach emphasizes maximizing information collection in the smallest, most agile, and least expensive experimental setups possible, emulating the mentality embraced by R&D across the petrochemical industry. Key points are supported by examples of successful and unsuccessful scale-up efforts undertaken at NREL and elsewhere. We close by showing that the U.S. national laboratory system is uniquely well equipped to serve as a hub to facilitate effective scale-up of promising biomass and waste carbon upgrading technologies.

14.
Gels ; 9(12)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38131964

RESUMO

The advancement of science and technology and the growth of industry have led to an escalating discharge of domestic sewage and industrial wastewater containing dyes. This surge in volume not only incurs higher costs but also exacerbates environmental burdens. However, the benefits of green and reusable catalytic reduction materials within dye processes are still uncertain. Herein, this study utilized the eco-friendly deep eutectic solvent method (DESM) and the chlorite-alkali method (CAM) to prepare a cellulose-composed wood aerogel derived from natural wood for 4-nitrophenol (4-NP) reduction. The life cycle assessment of wood aerogel preparative process showed that the wood aerogel prepared by the one-step DESM method had fewer environmental impacts. The CAM method was used innovatively to make uniform the chemical functional groups of different wood species and various wood maturities. Subsequently, palladium nanoparticles (Pd NPs) were anchored in the skeleton structure of the wood aerogel with the native chemical groups used as a reducing agent to replace external reducing agents, which reduced secondary pollution and prevented the agglomeration of nanoparticles. Results showed that the catalytic reduction efficiency of 4-NP can reach 99.8%, which shows promises for applications in wastewater treatment containing dyes. Moreover, investigation of the advantages of preparation methods of wood aerogel has important implications for helping researchers and producers choose suitable preparation strategies according to demand.

15.
ACS Sustain Chem Eng ; 11(44): 15876-15886, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37969886

RESUMO

Reducing the energy intensity of the mechanical refining-based pretreatment process for producing lignocellulosic-derived sugars without significantly affecting enzymatic hydrolysis sugar yields is challenging. This work investigated the impact of different refining conditions on energy consumption, enzymatic sugar yields, minimum sugar selling price, and environmental impacts for the conversion of corn stover to sugars. A positive proportionate correlation between specific energy consumption and enzymatic sugar yields was observed when changing the refiner plate gap was changed, which agrees with other reported works. However, the correlation between specific energy consumption and enzymatic sugar yields is not straightforward when the rotational speed and refiner plate design change. We observed that, for a corn stover material with low consistency disc refining, specific energy consumption decreased by >50% by decreasing the rotation speed without affecting enzymatic sugar yields. By changing refiner plate designs, a 45% reduction in specific energy consumption could be achieved without affecting the glucose yield, albeit still with a detrimental impact on the xylose yield. Our high-fidelity disc refining model was able to predict the energy consumption for different refiner plate geometry designs and operating conditions. Techno-economic and life-cycle analyses indicate that the plate design and operating conditions have a direct impact on overall process power consumption and sugar yields, with sugar yields strongly dictating the minimum sugar selling price, the life cycle greenhouse gas emissions, and fossil energy consumption. To minimize the environmental impact and maximize process economics, optimization of the mechanical refining process should target maintaining high sugar yields, while lowering refining energy consumption.

16.
Sci Adv ; 9(40): eadi3821, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801505

RESUMO

CDK4/6 inhibitors (CDK4/6i) plus endocrine therapy are now standard first-line therapy for advanced HR+/HER2- breast cancer, but developing resistance is just a matter of time in these patients. Here, we report that a cyclin E1-interacting lncRNA (EILA) is up-regulated in CDK4/6i-resistant breast cancer cells and contributes to CDK4/6i resistance by stabilizing cyclin E1 protein. EILA overexpression correlates with accelerated cell cycle progression and poor prognosis in breast cancer. Silencing EILA reduces cyclin E1 protein and restores CDK4/6i sensitivity both in vitro and in vivo. Mechanistically, hairpin A of EILA binds to the carboxyl terminus of cyclin E1 protein and hinders its binding to FBXW7, thereby blocking its ubiquitination and degradation. EILA is transcriptionally regulated by CTCF/CDK8/TFII-I complexes and can be inhibited by CDK8 inhibitors. This study unveils the role of EILA in regulating cyclin E1 stability and CDK4/6i resistance, which may serve as a biomarker to predict therapy response and a potential therapeutic target to overcome resistance.


Assuntos
Neoplasias da Mama , RNA Longo não Codificante , Humanos , Feminino , RNA Longo não Codificante/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Divisão Celular , Ubiquitinação , Quinase 4 Dependente de Ciclina/genética
17.
J Am Chem Soc ; 145(36): 20073-20080, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37664895

RESUMO

Functionalized polymer vesicles have been proven to be highly promising in biomedical applications due to their good biocompatibility, easy processability, and multifunctional responsive capacities. However, photothermal-responsive polymer vesicles triggered by near-infrared (NIR) light have not been widely reported until now. Herein, we propose a new strategy for designing NIR light-mediated photothermal polymer vesicles. A small molecule (PTA) with NIR-triggered photothermal features was synthesized by combining a D-D'-A-D'-D configuration framework with a molecular rotor function (TPE). The feasibility of the design strategy was demonstrated through density functional theory calculations. PTA moieties were introduced in the hydrophobic segment of a poly(ethylene glycol)-poly(trimethylene carbonate) block copolymer, of which the carbonate monomers were modified in the side chain with an active ester group. The amphiphilic block copolymers (PEG44-PTA2) were then used as building blocks for the self-assembly of photothermal-responsive polymer vesicles. The new class of functionalized polymer vesicles inherited the NIR-mediated high photothermal performance of the photothermal agent (PTA). After NIR laser irradiation for 10 min, the temperature of the PTA-Ps aqueous solution was raised to 56 °C. The photothermal properties and bilayer structure of PTA-Ps after laser irradiation were still intact, which demonstrated that they could be applied as a robust platform in photothermal therapy. Besides their photothermal performance, the loading capacity of PTA-Ps was investigated as well. Hydrophobic cargo (Cy7) and hydrophilic cargo (Sulfo-Cy5) were successfully encapsulated in the PTA-Ps. These properties make this new class of functionalized polymer vesicles an interesting platform for synergistic therapy in anticancer treatment.

18.
Inorg Chem ; 62(40): 16641-16651, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37738294

RESUMO

The electrochemical nitrate reduction reaction (NO3RR) is an attractive green alternative to the conventional Haber-Bosch method for the synthesis of NH3. However, this reaction is a tandem process that involves multiple steps of electrons and protons, posing a significant challenge to the efficient synthesis of NH3. Herein, we report a high-rate NO3RR electrocatalyst of Fe and Cu double-doped Co3O4 nanorod (Fe1/Cu2-Co3O4) with abundant oxygen vacancies, where the Cu preferentially catalyzes the rapid conversion of NO3- to NO2- and the oxygen vacancy in the Co3O4 substrate can accelerate NO2- reduction to NH3. In addition, the introduction of Fe can efficiently capture atomic H* that promotes the dynamics of NO2- to NH3, improving Faradaic efficiency of the produced NH3. Controlled experimental results show that the optimal electrocatalyst of Fe1/Cu2-Co3O4 exhibits good performance with high conversion (93.39%), Faradaic efficiency (98.15%), and ammonia selectivity (98.19%), which is significantly better than other Co-based materials. This work provides guidance for the rational design of high-performance NO3RR catalysts.

19.
Org Lett ; 25(39): 7100-7104, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37767977

RESUMO

C-H methylation of heteroarenes (e.g., indoles, pyrroles, etc.) is frequently applied in the synthesis of drug/biorelated compounds. We herein report the use of CO2/H2 as a methylation reagent for selective C-H methylation of indoles and pyrroles in the presence of cobalt/B(C6F5)3 cocatalysts. The Lewis acidic additive B(C6F5)3 is essential to achieving good reactivity for a broad scope of substituted indoles and pyrroles (20 examples, up to 92% yields). The C-H methylation is accomplished via the CO2 reduction/C-C bond formation/reduction sequence. Water is the only byproduct. This system based on the use of non-noble metal catalysts features an environmentally benign alternative for C-H methylation.

20.
Polymers (Basel) ; 15(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37688191

RESUMO

Three-dimensional porous carbon materials with moderate heteroatom-doping have been extensively investigated as promising electrode materials for energy storage. In this study, we fabricated a 3D cross-linked chitosan-dicyandiamide-VOSO4 hydrogel using a polymerization process. After pyrolysis at high temperature, 3D porous VOx/N-doped carbon nanosheet hybrids (3D VNCN) were obtained. The unique 3D porous skeleton, abundant doping elements, and presence of VOx 3D VNCN pyrolyzed at 800 °C (3D VNCN-800) ensured excellent electrochemical performance. The 3D VNCN-800 electrode exhibits a maximum specific capacitance of 408.1 F·g-1 at 1 A·g-1 current density and an admirable cycling stability with 96.8% capacitance retention after 5000 cycles. Moreover, an assembled symmetrical supercapacitor based on the 3D VNCN-800 electrode delivers a maximum energy density of 15.6 Wh·Kg-1 at a power density of 600 W·Kg-1. Our study demonstrates a potential guideline for the fabrication of porous carbon materials with 3D structure and abundant heteroatom-doping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA