Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Soft Robot ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38634786

RESUMO

The use of a soft multi-fingered hand in handling fragile objects has been widely acknowledged. Nevertheless, high flexibility often results in decreased load capacity, necessitating the need for variable stiffness. This article introduces a new soft multi-fingered hand featuring variable stiffness. The finger of the hand has three chambers and an endoskeleton mechanism. Two chambers facilitate bending and swinging motions, whereas the third adjusts stiffness. An endoskeleton mechanism is embedded in the third chamber, and the friction between its moving parts increases as negative air pressure rises, causing the finger's stiffness to increase. This mechanism can alter its stiffness in any configuration, which is particularly useful in manipulating irregular-shaped fragile objects post-grasping. The effectiveness of the proposed soft multi-fingered hand is validated through five experiments: stiffness adjustment, finger stiffening under a specific orientation, bulb screwing, heavy object lifting, and bean curd grasping. The results demonstrate that the proposed soft multi-fingered hand exhibits robust grasping capabilities for various fragile objects.

2.
Biomed Pharmacother ; 173: 116377, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442671

RESUMO

Glycogen synthase kinase-3(GSK-3) is a protein kinase that can phosphorylate over a hundred substrates and regulate cell differentiation, proliferation, and death. Researchers have acknowledged the pivotal role of abnormal activation of GSK-3 in the progression of various diseases over the past few decades. Recent studies have mostly concentrated on investigating the function of GSK-3 in the tumor microenvironment, specifically examining the interaction between TAM, NK cells, B cells, and T cells. Furthermore, GSK-3 exhibits a strong association with immunological checkpoints, such as programmed cell death protein 1. Novel GSK-3 inhibitors have potential in tumor immunotherapy, exerting beneficial effects on hematologic diseases and solid tumors. Nevertheless, there is a lack of reviews about the correlation between tumor-associated immune cells and GSK-3. This study intends to analyze the function and mechanism of GSK-3 comprehensively and systematically in the tumor microenvironment, with a special focus on its influence on various immune cells. The objective is to present novel perspectives for GSK-3 immunotherapy.


Assuntos
Quinase 3 da Glicogênio Sintase , Neoplasias , Humanos , Microambiente Tumoral , Neoplasias/terapia , Linfócitos T , Imunoterapia , Glicogênio Sintase Quinase 3 beta
3.
Int J Biol Macromol ; 264(Pt 1): 130448, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428756

RESUMO

As lignocellulose recalcitrance principally restricts for a cost-effective conversion into biofuels and bioproducts, this study re-selected the brittle stalk of corn mutant by MuDR-transposon insertion, and detected much reduced cellulose polymerization and crystallinity. Using recyclable CaO chemical for biomass pretreatment, we determined a consistently enhanced enzymatic saccharification of pretreated corn brittle stalk for higher-yield bioethanol conversion. Furthermore, the enzyme-undigestible lignocellulose was treated with two-step thermal-chemical processes via FeCl2 catalysis and KOH activation to generate the biochar with significantly raised adsorption capacities with two industry dyes (methylene blue and Congo red). However, the desirable biochar was attained from one-step KOH treatment with the entire brittle stalk, which was characterized as the highly-porous nanocarbon that is of the largest specific surface area at 1697.34 m2/g and 2-fold higher dyes adsorption. Notably, this nanocarbon enabled to eliminate the most toxic compounds released from CaO pretreatment and enzymatic hydrolysis, and also showed much improved electrochemical performance with specific capacitance at 205 F/g. Hence, this work has raised a mechanism model to interpret how the recalcitrance-reduced lignocellulose is convertible for high-yield bioethanol and multiple-function biochar with high performance.


Assuntos
Celulose , Carvão Vegetal , Zea mays , Celulose/química , Zea mays/química , Polimerização , Corantes
4.
Int J Biol Macromol ; 262(Pt 2): 130137, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354940

RESUMO

Crop straws provide enormous biomass residues applicable for biofuel production and trace metal phytoremediation. However, as lignocellulose recalcitrance determines a costly process with potential secondary waste liberation, genetic modification of plant cell walls is deemed as a promising solution. Although pectin methylation plays an important role for plant cell wall construction and integrity, little is known about its regulation roles on lignocellulose hydrolysis and trace metal elimination. In this study, we initially performed a typical CRISPR/Cas9 gene-editing for site mutations of OsPME31, OsPME34 and OsPME79 in rice, and then determined significantly upgraded pectin methylation degrees in the young seedlings of three distinct site-mutants compared to their wild type. We then examined distinctively improved lignocellulose recalcitrance in three mutants including reduced cellulose levels, crystallinity and polymerization or raised hemicellulose deposition and cellulose accessibility, which led to specifically enlarged biomass porosity either for consistently enhanced biomass enzymatic saccharification under mild alkali pretreatments or for cadmium (Cd) accumulation up to 2.4-fold. Therefore, this study proposed a novel model to elucidate how pectin methylation could play a unique enhancement role for both lignocellulose enzymatic hydrolysis and Cd phytoremediation, providing insights into precise pectin modification for effective biomass utilization and efficient trace metal exclusion.


Assuntos
Oryza , Oryza/metabolismo , Pectinas/metabolismo , Cádmio/metabolismo , Biomassa , Biodegradação Ambiental , Lignina/metabolismo , Celulose/metabolismo , Metilação
5.
Sci Total Environ ; 914: 169982, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215846

RESUMO

The ecological impact of microplastics (MPs) in coastal environments has been widely studied. However, the influence of small microplastics in the actual environment is often overlooked due to measurement challenges. In this study, Hangzhou Bay (HZB), China, was selected as our study area. High-throughput metagenomic sequencing and micro-Raman spectrometry were employed to analyze the microbial communities and microplastics of coastal sediment samples, respectively. We aimed to explore the ecological impact of MPs with small sizes (≤ 100 µm) in real coastal sediment environments. Our results revealed that as microplastic size decreased, the environmental behavior of MPs underwent alterations. In the coastal sediments, no significant correlations were observed between the detected MPs and the whole microbial communities, but small MPs posed potential hazards to eukaryotic communities. Moreover, these small MPs were more prone to microbial degradation and significantly affected carbon metabolism in the habitat. This study is the first to reveal the comprehensive impact of small MPs on microbial communities in a real coastal sediment environment.


Assuntos
Microbiota , Poluentes Químicos da Água , Microplásticos/toxicidade , Microplásticos/análise , Plásticos/análise , Sedimentos Geológicos/química , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental
6.
FASEB J ; 37(11): e23236, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37846808

RESUMO

Immune checkpoint inhibitors have effectively transformed the treatment of many cancers, particularly those highly devastating malignancies. With their widespread popularity, the drawbacks of immune checkpoint inhibitors are also recognized, such as drug resistance and immune-related systematic side effects. Thus, it never stops investigating novel immune checkpoint inhibitors. Lymphocyte Activation Gene-3 (LAG-3) is a well-established co-inhibitory receptor that performs negative regulation on immune responses. Recently, a novel FDA-approved LAG-3 blocking agent, together with nivolumab as a new combinational immunotherapy for metastatic melanoma, brought LAG-3 back into focus. Clinical data suggests that anti-LAG-3 agents can amplify the therapeutic response of other immune checkpoint inhibitors with manageable side effects. In this review, we elucidate the intercellular and intracellular mechanisms of LAG-3, clarify the current understanding of LAG-3 in the tumor microenvironment, identify present LAG-3-associated therapeutic agents, discuss current LAG-3-involving clinical trials, and eventually address future prospects for LAG-3 inhibitors.


Assuntos
Inibidores de Checkpoint Imunológico , Melanoma , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/patologia , Nivolumabe/uso terapêutico , Imunoterapia , Receptor de Morte Celular Programada 1 , Microambiente Tumoral
7.
Environ Res ; 238(Pt 1): 117106, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37699472

RESUMO

Wastewater treatment plants (WWTPs) effluent often contains a significant amount of residual organic pollutants and nutrients, causing disturbance to the coastal effluent receiving areas (ERA). Microbial communities in coastal ERA sediments may benefit from the coexistence of organic pollutants and nutrients, promoting the emergence of versatile taxa that are capable of eliminating these substances simultaneously. However, the identification and exploration of versatile taxa in natural environments under anthropogenic disturbances remain largely uncharted territory. In this study, we specifically focused on the versatile taxa coupled by the degradation of aromatic compounds (ACs) and denitrification, using Hangzhou Bay in China as our study area. We explored how WWTPs effluent disturbance would affect the versatile taxa, and particularly examined the role of disturbance intensity in shaping their composition. Intriguingly, we found that versatile taxa were mainly derived from denitrifiers like Pseudomonas, suggesting the fulfilled potential of denitrifiers regarding ACs degradation. We also discovered that moderate disturbance stimulated the diversity of versatile taxa, resulting in strengthened functional redundancy. Through correlation network analysis, we further demonstrated that moderate disturbance enhanced the community-level cooperation. Thus, moderate disturbance serves as a catalyst for versatile taxa to maintain community function, making them more resilient to effluent disturbances. Additionally, we identified COD and NO3--N concentrations as significant environmental factors influencing the versatile taxa. Overall, our findings reveal the role of effluent disturbances in the promotion of versatile taxa, and highlight moderate disturbance can foster more robust versatile taxa that are better equipped to handle effluent disturbances.


Assuntos
Poluentes Ambientais , Microbiota , Desnitrificação , Efeitos Antropogênicos , China
8.
Anal Chim Acta ; 1272: 341467, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37355326

RESUMO

Liquid chromatography mass spectrometry (LC-MS) has been increasingly used for metabolome analysis. One of the critical steps in the LC-MS metabolome analysis workflow is related to metabolite identification. Among the measured parameters, peak mass is commonly used to search against a database for potential metabolite matches. Higher accuracy mass measurement allows the use of a narrower mass tolerance window for mass search. While various types of mass analyzers can routinely measure a peak mass with an error of less than a few ppm, mass measurement accuracy is not uniform for peaks with different intensities, particularly for quadrupole time-of-flight (QTOF) MS. Herein we present a simple and convenient method to determine the relation between peak intensity and mass error in LC-QTOF-MS-based metabolome analysis, followed by intensity-dependent mass search (IDMS) of a database for metabolite matches. This method is based on running a series of sodium formate mass calibrants, as part of the standard operating procedure (SOP) in LC-MS data acquisition, and then curve-fitting the measured mass errors and peak intensities. We show that, in two different quadrupole time-of-flight (QTOF) mass analyzers, mass accuracy is generally reduced as peak intensity decreases, which is independent of m/z values in the range commonly used for metabolite detection (e.g., m/z < 1000). We demonstrate the improvement in metabolite matches using IDMS in the analyses of dansyl labeled standards and human urine samples. We have implemented the IDMS method in the freely available MCID database at www.mycompoundid.org, which is composed of 8021 known human endogenous metabolites and their predicted metabolic products (375,809 compounds from one metabolic reaction and 10,583,901 compounds from two reactions).


Assuntos
Metaboloma , Metabolômica , Humanos , Marcação por Isótopo/métodos , Compostos de Dansil/química , Metabolômica/métodos , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos
9.
Front Endocrinol (Lausanne) ; 14: 1135085, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36967786

RESUMO

Background: Circadian rhythm plays an essential role in various physiological and pathological processes related to cognitive function. The rest-activity rhythm (RAR) is one of the most prominent outputs of the circadian system. However, little is known about the relationships between RAR and different domains of cognitive function in older adults. The purpose of this study was to examine the relationships between RAR and various fields of cognitive function in older Americans. Methods: This study included a total of 2090 older adults ≥ 60 years old from the National Health and Nutrition Examination Survey (NHANES) in 2011-2014. RAR parameters were derived from accelerometer recordings. Cognitive function was assessed using the word learning subtest developed by the Consortium to Establish a Registry for Alzheimer's disease (CERAD W-L), the Animal Fluency Test (AFT) and the Digital Symbol Substitution Test (DSST). Linear regression was used to determine the relationships between RAR parameters (IS, IV, RA, L5, M10) and cognitive function scores (CERAD W-L, AFT, DSST). Results: After adjusting for potential confounders, lower IS and M10 were associated with lower CERAD W-L scores (P=0.033 and P=0.002, respectively). Weaker RA and higher L5 were associated with lower AFT scores (P<0.001 and P=0.001, respectively). And lower IS, RA, and higher L5 were associated with lower DSST scores (P=0.019, P<0.001 and P<0.001, respectively). In addition, the results of sensitivity analysis were similar to those of our main analyses. The main correlation results between the RAR indicators and cognitive function were robust. Conclusions: This study suggested that the weakened and/or disrupted RAR was associated with cognitive decline in different domains in Americans over the age of 60.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Estados Unidos/epidemiologia , Humanos , Inquéritos Nutricionais , Cognição/fisiologia , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/epidemiologia
10.
Behav Sleep Med ; 21(5): 529-539, 2023 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-36263691

RESUMO

BACKGROUND: Delayed sleep-wake phase disorder (DSWPD) is common and easily misdiagnosed in young people, and to date, there is no evidence-based treatment. PURPOSE: A nonblinded randomized controlled study evaluated the effect of agomelatine therapy (AT) and cognitive behavior therapy (CBT) on DSWPD in young adults. METHODS: Sixty adolescents and young adults (range = 19-24 years, mean = 22 years, 52% female) diagnosed with DSWPD were randomized to receive 4 weeks of agomelatine therapy with or without cognitive behavior therapy. Sleep diaries, Pittsburgh Sleep Quality Index (PSQI), Epworth Sleepiness Scale (ESS), Insomnia Severity Index (ISI), and World Health Organization wellbeing questionnaire (WHO-5) were measured pre-treatment and post-treatment. RESULTS: Agomelatine therapy for 4 weeks shifted the sleep-wake rhythm (p < .001) forward in both groups at the week 4 assessment. There were no significant differences in sleep onset (p = .099) and sleep offset (p = .959) between the CBT group and the no treatment (NT) group at the follow-up visits. However, significant differences were found in sleep duration (p = .002), sleep quality (p=0.005), sleep difficulties (p < .001), daytime sleepiness (p = .001), and wellbeing (p = .007) between groups. CONCLUSIONS: The improvements were received largely through the sleep-promoting effects of agomelatine therapy, and combining with cognitive behavior therapy on maintenance of altered sleep rhythms might be feasible.


Assuntos
Terapia Cognitivo-Comportamental , Transtornos do Sono do Ritmo Circadiano , Distúrbios do Início e da Manutenção do Sono , Adolescente , Humanos , Feminino , Adulto Jovem , Masculino , Sono , Transtornos do Sono do Ritmo Circadiano/tratamento farmacológico , Resultado do Tratamento
11.
Mol Cancer ; 21(1): 177, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36071472

RESUMO

Given that hypoxia is a persistent physiological feature of many different solid tumors and a key driver for cancer malignancy, it is thought to be a major target in cancer treatment recently. Tumor-associated macrophages (TAMs) are the most abundant immune cells in the tumor microenvironment (TME), which have a large impact on tumor development and immunotherapy. TAMs massively accumulate within hypoxic tumor regions. TAMs and hypoxia represent a deadly combination because hypoxia has been suggested to induce a pro-tumorigenic macrophage phenotype. Hypoxia not only directly affects macrophage polarization, but it also has an indirect effect by altering the communication between tumor cells and macrophages. For example, hypoxia can influence the expression of chemokines and exosomes, both of which have profound impacts on the recipient cells. Recently, it has been demonstrated that the intricate interaction between cancer cells and TAMs in the hypoxic TME is relevant to poor prognosis and increased tumor malignancy. However, there are no comprehensive literature reviews on the molecular mechanisms underlying the hypoxia-mediated communication between tumor cells and TAMs. Therefore, this review has the aim to collect all recently available data on this topic and provide insights for developing novel therapeutic strategies for reducing the effects of hypoxia.


Assuntos
Neoplasias , Macrófagos Associados a Tumor , Humanos , Hipóxia/metabolismo , Macrófagos/metabolismo , Neoplasias/patologia , Microambiente Tumoral
12.
Artigo em Inglês | MEDLINE | ID: mdl-35958934

RESUMO

Intestinal injury has been regarded as an important causative factor for systemic inflammation during heatstroke, and maintaining intestinal integrity has been a potential target for the prevention of HS. Huoxiang Zhengqi Dropping Pills (HZPD) is a modern preparation of Huoxiang Zhengqi and widely used to prevent HS. The present study aims to explore the protective effect of HZDP on intestinal injury during heatstroke and analyze its potential pharmacodynamic basis. Male rats in the control and HS groups were given normal saline, and those in the HZDP groups were given HZDP (0.23, 0.46, and 0.92 g/kg) before induction of HS. Serum contents of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), intestinal fatty acid-binding protein (iFABP), and diamine oxidase (DAO) were determined using ELISA. Histopathology of intestinal injury was observed following H&E staining. The expression of claudin-3 was determined using western blot, immunohistochemistry, and immunofluorescence techniques. Moreover, network pharmacological tools were used to analyze the potential pharmacodynamic basis and the mechanism of HZDP. Treatment with HZDP significantly prolonged the time to reach Tc. Compared with the control group, the contents of TNF-α, IL-6, iFABP, and DAO in HS rats increased markedly. HZDP treatments reduced these levels significantly, and the effects in the middle dose group (0.46 g/kg) were most obvious. HZDP also attenuated intestinal injury and significantly reversed the decrease in claudin-3 expression. Bioinformatics analysis suggested that 35 active ingredients and 128 target genes of HZDP were screened from TCMSP and 93 target genes intersected with heatstroke target genes, which were considered potential therapeutic targets. TNF-α and IL-6 were the main inflammatory target genes of HZDP correlated with HS. These results indicated that HZDP effectively protected intestinal barrier function and prevented acute intestinal injury by increasing the expression of claudin-3 in rats, eventually improving heat resistance.

14.
Theranostics ; 12(5): 2483-2501, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265221

RESUMO

Rationale: Forkhead/winged helix transcriptional factor P3 (FoxP3) is a well-studied transcription factor that maintains the activity of T cells, but whether cardiomyocytic FoxP3 participates in cardiac remodeling (CR) remains unclear. The present study was to investigate the role of cardiomyocytic FoxP3 in CR from the perspective of mitophagy. Methods: CR was induced by angiotensin II (AngII) in vitro, or by isoproterenol (Iso) in vivo using male C57 mice or FoxP3DTR mice. Histological changes were observed by hematoxylin-eosin and Masson staining. Molecular changes were detected by immunohistochemistry, immunofluorescence, immunoblotting, and real-time PCR. Mitophagy was shaped by transmission electron microscopy and co-localization. The mRNA expression was operated by siRNA or adeno associated virus (AAV). Molecular interactions were detected by co-localization, immunoprecipitation (IP), and chromatin IP. Results: The expression and nuclear translocation of cardiomyocytic FoxP3 were downregulated in CR, while they were upregulated after triptolide (TP) treatment. In left ventricle (LV) remodeling in mice, autophagy was activated continuously in the myocardium, and TP significantly attenuated it. AngII induced massive mitophagy characterized by the activation of autophagy regulatory protein 5 (Atg5)-dependent autophagic flux. Critically, Parkin was identified as the main adaptor mediated myocardial mitophagy and was responsible for the effect of TP. Moreover, FoxP3 was responsible for the downregulation of Parkin and inhibited AngII-induced cardiac mitophagy. We found that mitophagy increased significantly and the inhibition of TP treatment reversed completely in FoxP3-deficient LVs. Mechanistically, FoxP3 interacted with a motif located downstream of the activating transcription 4 (ATF4)-binding motif involved in the promoter of Parkin and hijacked free nuclear ATF4 to decrease Parkin mRNA expression in CR. Conclusion: Cardiomyocytic FoxP3 could negatively regulate Parkin-mediated mitophagy in CR, and restoring cardiomyocytic FoxP3 activity provided a cardioprotective strategy by inhibiting excessive cardiac mitophagy.


Assuntos
Mitofagia , Remodelação Ventricular , Angiotensina II/farmacologia , Animais , Diterpenos , Compostos de Epóxi , Fatores de Transcrição Forkhead/metabolismo , Masculino , Camundongos , Mitocôndrias/metabolismo , Mitofagia/genética , Fenantrenos , RNA Mensageiro/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
15.
Fitoterapia ; 157: 105127, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35033607

RESUMO

One new xanthone, griseophenexanthone A (1), one new benzophenone, digriseophene A (2), and 14 previously reported compounds were isolated from the culture of Penicillium sp. ct-28, an endophytic fungus of Corydlis tomentella. The structures of the isolated compounds were identified by an extensive analysis of HRESIMS, 1D and 2D NMR. MTT assay showed that six xanthones (1 and 3-7) significantly inhibited cell proliferation in four cancer cell lines, with IC50 values ranging from 18.12 ± 2.42 to 85.55 ± 7.66 µM. Our results showed that slight structural changes led to obvious activity differences among these compounds. We also investigated the effects of the six xanthones on cell cycle and apoptosis in human hepatoma HepG2 cells. Compound 7 caused cell cycle arrest at G1 phase, compounds 5 and 6 caused cell cycle arrest at S phase, whereas compounds 1, 3 and 4 had no effects on cell cycle distribution. All six xanthones induced apoptosis in dose-dependent manners in HepG2 cells accompanied by degradation of PARP and activation of caspase 3. The structure-activity relationship analysis revealed that the effects of these xanthones on cell cycle and apoptosis in HepG2 cells were closely related to the substituent groups on their skeleton. Our studies provide novel insights for the structural optimization of xanthones in the development of new anticancer drugs.


Assuntos
Benzofenonas/toxicidade , Proliferação de Células/efeitos dos fármacos , Corydalis/microbiologia , Penicillium/química , Xantonas/toxicidade , Apoptose/efeitos dos fármacos , Benzofenonas/química , Benzofenonas/isolamento & purificação , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Relação Estrutura-Atividade , Xantonas/química , Xantonas/isolamento & purificação
16.
Chemosphere ; 291(Pt 2): 132986, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34801574

RESUMO

2,4-Dichloro-6-nitrophenol (DCNP) is a toxic nitrated byproduct of 2,4-dichlorophenol (2,4-DCP) commonly found in agriculturally impacted waters (e.g., paddy waters). DCNP has both genotoxicity and developmental toxicity and can cause endocrine disrupting effects on aquatic species. Herein, we investigated the photolysis of DCNP under UV254 irradiation in aqueous solutions. Results show that the anionic form of DCNP (DCNP-) is more photoreactive than the neutral form (DCNP0) due to its higher molar absorption coefficient and quantum yield. The presence of Suwannee River natural organic matter (SRNOM) inhibits the direct photolysis of DCNP through light screening. A series of photoproducts were identified by solid phase extraction (SPE) and high resolution-mass spectrometry (HR-MS) analysis. The photolysis of DCNP generates several photoproducts, including photoreduction, photonucleophilic substitution, photoionization, and dimerization intermediates. The primary photochemical mechanisms include photoionization from the singlet state and heterolytic C-Cl bond splitting in the triplet state. This contribution may shed some light on the photochemical transformation and fate of DCNP in UV-based engineering systems or natural sunlit surface waters.


Assuntos
Nitratos , Poluentes Químicos da Água , Clorofenóis , Cinética , Nitrofenóis , Fotólise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
17.
J Pineal Res ; 71(4): e12764, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34486775

RESUMO

This study investigated whether and how fetal malnutrition would influence endogenous melatonin synthesis, and whether such effect of fetal malnutrition would transmit to the next generation. We enrolled 2466 participants and 1313 of their offspring. The urine 6-hydroxymelatonin sulfate and serum melatonin rhythm were measured. Methylation microarray detection and bioinformatics analysis were performed to identify hub methylated sites. Additionally, rat experiment was performed to elucidate mechanisms. The participants with fetal malnutrition had lower 6-hydroxymelatonin sulfate (16.59 ± 10.12 µg/24 hours vs 24.29 ± 11.99 µg/24 hours, P < .001) and arear under curve of melatonin rhythm (67.11 ± 8.16 pg/mL vs 77.11 ± 8.04 pg/mL, P < .001). We identified 961 differentially methylated sites, in which the hub methylated sites were locating on protein kinase C alpha (PRKCA) and cAMP response element-binding protein (CREB1) promoters, mediating the association of fetal malnutrition with impaired melatonin secretion. However, such effects were not observed in the offspring (all P > .05). Impaired histomorphology of pineal, decreased melatonin in serum, pineal, and pinealocyte were also found in the in vivo and in vitro experiments (P < .05 for the differences of the indicators). Hypermethylation of 10 CpG sites on the PRKCA promoter and 8 CpG sites on the CREB1 promoter were identified (all P < .05), which down-regulated PRKCA and CREB1 expressions, leading to decreased expression of AANAT, and then resulting in the impaired melatonin synthesis. Collectively, fetal malnutrition can impair melatonin synthesis through hypermethylation of PRKCA and CREB1 promoters, and such effects cannot be transmitted to the next generation.


Assuntos
Transtornos da Nutrição Fetal , Melatonina , Glândula Pineal , Animais , Ritmo Circadiano , Proteína Quinase C-alfa , Ratos , Elementos de Resposta
18.
ACS Appl Mater Interfaces ; 13(33): 39755-39762, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34380312

RESUMO

2D metal-organic frameworks (MOFs) are promising 2D materials with a wide range of applications due to their unique physical and chemical properties. However, 2D MOFs are prone to stacking due to their ultrathin thickness, and the high-yield preparation method of 2D MOFs is highly demanded. In this work, a rapid and scalable method is novelistically presented to prepare 2D MOFs with highly colloidal stability and high yield through coordination modulation at room temperature. A well-ordered CuBDC-MBA nanosheet (BDC, 1,4-benzenedicarboxylic; MBA, 4-methoxybenzoic acid) fabricated by introducing MBA as a modulator exhibits extremely stable colloid suspension for 6 months and the yield of well-dispersed CuBDC-MBA is higher than 88.6%. As MBA successfully participates in synthetic coordination of CuBDC-MBA and is presumably installed on the edge of 2D MOFs with low MBA content due to anisotropic growth, CuBDC-MBA and CuBDC are similar with respect to nanosheet morphology, integrated crystal structure, and porosity. Moreover, well-dispersed CuBDC-MBA shows higher catalytic effectiveness for the cycloaddition reaction of CO2 with 1.5 times higher yield than CuBDC. Thus, this method can provide a new idea based on coordination modulation to directly fabricate 2D MOFs with purposeful properties.

19.
Int Immunopharmacol ; 99: 108040, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34435586

RESUMO

Despite advances in the understanding of the pathophysiology of ischemic stroke, therapeutic options remain limited. Methylcobalamin is an endogenous vitamin B12 that exhibits anti-inflammatory and antiapoptotic activities in a variety of diseases. In this study, we aimed to explore the neuroprotective effects and mechanism of action of methylcobalamin on cerebral ischemic injury in vitro and in vivo. The oxygen and glucose deprivation/reperfusion model and middle cerebral artery occlusion model were used to simulate cerebral ischemic injury in vitro and in vivo. Cell viability, inflammatory factors, cell apoptosis, and protein expression levels were determined. Further, autophagy flux and the cerebral infarction volume were measured. The modified neurological severity score, Longa score, Rotarod assay, and foot-fault test were used to evaluate behavioral changes and neurological deficits in rats. In vitro, methylcobalamin significantly increased cell viability, decreased lactate dehydrogenase release, attenuated inflammatory cytokine expression, reduced the apoptotic proportion, and enhanced autophagy flux after OGD treatment. In addition, Bcl-2 and Beclin1 expression levels and the LC3 II/I ratio were increased, whereas levels of Bax and cleaved caspase-3 were decreased. In vivo, methylcobalamin significantly reduced the cerebral infarction volume and neurological deficits in the rats. Furthermore, methylcobalamin activated the ERK1/2 pathway, whereas ERK1/2 inhibitors diminished its effects in the in vitro and in vivo models. In conclusion, methylcobalamin may exert a neuroprotective effect on cerebral ischemia and is a promising drug candidate for developing novel neuroprotective therapies.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Vitamina B 12/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Masculino , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Fármacos Neuroprotetores/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Vitamina B 12/farmacologia , Vitamina B 12/uso terapêutico
20.
Nanotechnology ; 32(41)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34233312

RESUMO

For decades, lab-on-fiber (LOF) sensing systems have become an emerging optical sensing platform due to the features of small size and light weight. Herein, a simple and efficientin situconstruction strategy was reported for the preparation of LOF sensing platform based on the integration of responsive Fabry-Perot optical resonance cavity on optical fibers. The responsive Fabry-Perot optical resonance cavity with thermal poly(N-isopropylacrylamide) polymer brush layer sandwiched by two silver layers was constructed on the end surface of the optical fiber through combiningin situsurface-initiated polymerization and metal film deposition techniques. Owing to the thermo-responsiveness of the intermediate layer, the as-prepared LOF sensing system shows a sensitive response towards the environmental temperature. Importantly, the as-prepared LOF sensing system also possesses excellent repeatability and rapid response rate. Together with the features of high sensitivity, excellent repeatability and rapid response rate, we believe such LOF sensing system will provide a foundation for the future applications of medical diagnosis,in vivodetection and public security.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA