Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
BMC Geriatr ; 24(1): 469, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811889

RESUMO

BACKGROUND: Recent genetic evidence supports a causal role for sarcopenia in osteoarthritis, which may be mediated by the occurrence of obesity or changes in circulating inflammatory protein levels. Here, we leveraged publicly available genome-wide association study data to investigate the intrinsic causal relationship between sarcopenia, obesity, circulating inflammatory protein levels, and osteoarthritis. METHODS: In this study, we used Mendelian randomization analyses to explore the causal relationship between sarcopenia phenotypes (Appendicular lean mass [ALM], Low hand-grip strength [LHG], and usual walking pace [UWP]) and osteoarthritis (Knee osteoarthritis [KOA], and Hip osteoarthritis [HOA]). Univariable Mendelian randomization (UVMR) analyses were performed using the inverse variance weighted (IVW) method, MR-Egger, weighted median method, simple mode, and weighted mode, with the IVW method being the primary analytical technique. Subsequently, the independent causal effects of sarcopenia phenotype on osteoarthritis were investigated using multivariate Mendelian randomization (MVMR) analysis. To further explore the mechanisms involved, obesity and circulating inflammatory proteins were introduced as the mediator variables, and a two-step Mendelian randomization analysis was used to explore the mediating effects of obesity and circulating inflammatory proteins between ALM and KOA as well as the mediating proportions. RESULTS: UVMR analysis showed a causal relationship between ALM, LHG, UWP and KOA [(OR = 1.151, 95% CI: 1.087-1.218, P = 1.19 × 10-6, PFDR = 7.14 × 10-6) (OR = 1.215, 95% CI: 1.004-1.470; P = 0.046, PFDR = 0.055) (OR = 0.503, 95% CI: 0.292-0.867; P = 0.013, PFDR = 0.027)], and a causal relationship between ALM, UWP and HOA [(OR = 1.181, 95% CI: 1.103-1.265, P = 2.05 × 10-6, PFDR = 6.15 × 10-6) (OR = 0.438, 95% CI: 0.226-0.849, P = 0.014, PFDR = 0.022)]. In the MVMR analyses adjusting for confounders (body mass index, insomnia, sedentary behavior, and bone density), causal relationships were observed between ALM, LHG, UWP and KOA [(ALM: OR = 1.323, 95%CI: 1.224- 1.431, P = 2.07 × 10-12), (LHG: OR = 1.161, 95%CI: 1.044- 1.292, P = 0.006), (UWP: OR = 0.511, 95%CI: 0.290- 0.899, P = 0.020)], and between ALM and HOA (ALM: OR = 1.245, 95%CI: 1.149- 1.348, P = 7.65 × 10-8). In a two-step MR analysis, obesity was identified to play a potential mediating role in ALM and KOA (proportion mediated: 5.9%). CONCLUSIONS: The results of this study suggest that decreased appendicular lean mass, grip strength, and walking speed increase the risk of KOA and decreased appendicular lean mass increases the risk of HOA in patients with sarcopenia in a European population. Obesity plays a mediator role in the occurrence of KOA due to appendicular lean body mass reduction.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Obesidade , Sarcopenia , Humanos , Análise da Randomização Mendeliana/métodos , Sarcopenia/epidemiologia , Sarcopenia/genética , Sarcopenia/diagnóstico , Obesidade/epidemiologia , Obesidade/genética , Obesidade/complicações , Estudo de Associação Genômica Ampla/métodos , Osteoartrite do Quadril/genética , Osteoartrite do Quadril/epidemiologia , Osteoartrite do Quadril/diagnóstico , Idoso , Força da Mão/fisiologia , Masculino , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/epidemiologia , Osteoartrite do Joelho/diagnóstico , Feminino , Osteoartrite/genética , Osteoartrite/epidemiologia , Análise Multivariada , Fenótipo
2.
Toxics ; 12(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38787107

RESUMO

The global burden of liver disease is enormous, which highlights the need for effective hepatoprotective agents. It was reported that allicin exhibits protective effects against a range of diseases. In this study, we further evaluated allicin's effect and mechanism in acute hepatic injury. Liver injury in mice was induced by intraperitoneal injection with 1% CCl4 (10 mL/kg/day). When the first dose was given, CCl4 was given immediately after administration of different doses of allicin (40, 20, and 10 mg/kg/day) as well as compound glycyrrhizin (CGI, 80 mg/kg/day), and then different doses of allicin (40, 20, and 10 mg/kg/day) as well as compound glycyrrhizin (CGI, 80 mg/kg/day) were administrated every 12 h. The animals were dissected 24 h after the first administration. The findings demonstrated a significant inhibition of CCl4-induced acute liver injury following allicin treatment. This inhibition was evidenced by notable reductions in serum levels of transaminases, specifically aspartate transaminase, along with mitigated histological damage to the liver. In this protective process, allicin plays the role of reducing the amounts or the expression levels of proinflammatory cytokines, IL-1ß, IL-6. Furthermore, allicin recovered the activities of the antioxidant enzyme catalase (CAT) and reduced the production of malondialdehyde (MDA) in a dose-dependent manner, and also reduced liver Caspase 3, Caspase 8, and BAX to inhibit liver cell apoptosis. Further analysis showed that the administration of allicin inhibited the increased protein levels of Nuclear factor-erythroid 2-related factor 2 (Nrf2) and NAD(P)H:quinone oxidoreductase 1 (NQO1), which is related to inflammation and oxidative stress. The in vitro study of the LPS-induced RAW264.7 inflammatory cell model confirmed that allicin can inhibit important inflammation-related factors and alleviate inflammation. This research firstly clarified that allicin has a significant protective effect on CCl4-induced liver injury via inhibiting the inflammatory response and hepatocyte apoptosis, alleviating oxidative stress associated with the progress of liver damage, highlighting the potential of allicin as a hepatoprotective agent.

3.
Mater Today Bio ; 26: 101038, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38638704

RESUMO

The ideal implant surface plays a substantial role in maintaining bone homeostasis by simultaneously promoting osteoblast differentiation and limiting overactive osteoclast activity to a certain extent, which leads to satisfactory dynamic osseointegration. However, the rational search for implant materials with an ideal surface structure is challenging and a hot research topic in the field of tissue engineering. In this study, we constructed titanium dioxide titanium nanotubes (TNTs) by anodic oxidation and found that this structure significantly promoted osteoblast differentiation and inhibited osteoclast formation and function while simultaneously inhibiting the total protein levels of proline-rich tyrosine kinase 2 (PYK2) and focal adhesion kinase (FAK). Knockdown of the PYK2 gene by siRNA significantly suppressed the number and osteoclastic differentiation activity of mouse bone marrow mononuclear cells (BMMs), while overexpression of PYK2 inhibited osteogenesis and increased osteoclastic activity. Surprisingly, we found for the first time that neither knockdown nor overexpression of the FAK gene alone caused changes in osteogenesis or osteoclastic function. More importantly, compared with deletion or overexpression of PYK2/FAK alone, coexpression or cosilencing of the two kinases accelerated the effects of TNTs on osteoclastic and osteogenic differentiation on the surface of cells. Furthermore, in vivo experiments revealed a significant increase in positiveexpression-PYK2 cells on the surface of TNTs, but no significant change in positiveexpression -FAK cells was observed. In summary, PYK2 is a key effector molecule by which osteoblasts sense nanotopological mechanical signals and maintain bone homeostasis around implants. These results provide a referable molecular mechanism for the future development and design of homeostasis-based regulatory implant biomaterials.

4.
Ecotoxicol Environ Saf ; 277: 116392, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677065

RESUMO

Smoking disrupts bone homeostasis and serves as an independent risk factor for the development and progression of osteoporosis. Tobacco toxins inhibit the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), promote BMSCs aging and exhaustion, but the specific mechanisms are not yet fully understood. Herein, we successfully established a smoking-related osteoporosis (SROP) model in rats and mice through intraperitoneal injection of cigarette smoke extract (CSE), which significantly reduced bone density and induced aging and inhibited osteogenic differentiation of BMSCs both in vivo and in vitro. Bioinformatics analysis and in vitro experiments confirmed that CSE disrupts mitochondrial homeostasis through oxidative stress and inhibition of mitophagy. Furthermore, we discovered that CSE induced BMSCs aging by upregulating phosphorylated AKT, which in turn inhibited the expression of FOXO3a and the Pink1/Parkin pathway, leading to the suppression of mitophagy and the accumulation of damaged mitochondria. MitoQ, a mitochondrial-targeted antioxidant and mitophagy agonist, was effective in reducing CSE-induced mitochondrial oxidative stress, promoting mitophagy, significantly downregulating the expression of aging markers in BMSCs, restoring osteogenic differentiation, and alleviating bone loss and autophagy levels in CSE-exposed mice. In summary, our results suggest that BMSCs aging caused by the inhibition of mitophagy through the AKT/FOXO3a/Pink1/Parkin axis is a key mechanism in smoking-related osteoporosis.


Assuntos
Células-Tronco Mesenquimais , Mitofagia , Osteoporose , Animais , Mitofagia/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Ratos , Osteoporose/induzido quimicamente , Osteoporose/patologia , Nicotiana/efeitos adversos , Proteína Forkhead Box O3/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Osteogênese/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Fumaça/efeitos adversos , Ubiquitina-Proteína Ligases/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Quinases/metabolismo , Camundongos Endogâmicos C57BL , Células da Medula Óssea/efeitos dos fármacos
5.
J Clin Periodontol ; 51(6): 787-799, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38348739

RESUMO

AIM: Using network pharmacology and experimental validation to explore the therapeutic efficacy and mechanism of curcumin (Cur) in periodontitis treatment. MATERIALS AND METHODS: Network pharmacology was utilized to predict target gene interactions of Cur-Periodontitis. Molecular docking was used to investigate the binding affinity of Cur for the predicted targets. A mouse model with ligature-induced periodontitis (LIP) was used to verify the therapeutic effect of Cur. Microcomputed tomography (micro-CT) was used to evaluate alveolar bone resorption, while western blotting, haematoxylin-eosin staining and immunohistochemistry were used to analyse the change in immunopathology. SYTOX Green staining was used to assess the in vitro effect of Cur in a mouse bone marrow-isolated neutrophil model exposed to lipopolysaccharide. RESULTS: Network pharmacology identified 114 potential target genes. Enrichment analysis showed that Cur can modulate the production of neutrophil extracellular traps (NETs). Molecular docking experiments suggested that Cur effectively binds to neutrophil elastase (ELANE), peptidylarginine deiminase 4 (PAD4) and cathepsin G, three enzymes involved in NETs. In LIP mice, Cur alleviated alveolar bone resorption and reduced the expression of ELANE and PAD4 in a time-dependent but dose-independent manner. Cur can directly inhibit NET formation in the cell model. CONCLUSIONS: Our research suggested that Cur may alleviate experimental periodontitis by inhibiting NET formation.


Assuntos
Curcumina , Modelos Animais de Doenças , Simulação de Acoplamento Molecular , Periodontite , Animais , Periodontite/tratamento farmacológico , Curcumina/farmacologia , Curcumina/uso terapêutico , Camundongos , Microtomografia por Raio-X , Humanos , Farmacologia em Rede , Masculino , Perda do Osso Alveolar/tratamento farmacológico , Perda do Osso Alveolar/diagnóstico por imagem , Camundongos Endogâmicos C57BL , Inflamação/tratamento farmacológico
6.
Redox Biol ; 67: 102922, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37826866

RESUMO

Clinical epidemiological studies have confirmed that tobacco smoking disrupts bone homeostasis and is an independent risk factor for the development of osteoporosis. The low viability and inferior osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) are important etiologies of osteoporosis. However, few basic studies have elucidated the specific mechanisms that tobacco toxins devastated BMSCs and consequently induced or exacerbated osteoporosis. Herein, our clinical data showed the bone mineral density (BMD) values of femoral neck in smokers were significantly lower than non-smokers, meanwhile cigarette smoke extract (CSE) exposure led to a significant decrease of BMD in rats and dysfunction of rat BMSCs (rBMSCs). Transcriptomic analysis and phenotype experiments suggested that the ferroptosis pathway was significantly activated in CSE-treated rBMSCs. Accumulated intracellular reactive oxygen species activated AMPK signaling, furtherly promoted NCOA4-mediated ferritin-selective autophagic processes, increased labial iron pool and lipid peroxidation deposition, and ultimately led to ferroptosis in rBMSCs. Importantly, in vivo utilization of ferroptosis and ferritinophagy inhibitors significantly alleviated BMD loss in CSE-exposed rats. Our study innovatively reveals the key mechanism of smoking-related osteoporosis, and provides a possible route targeting on the perspective of BMSC ferroptosis for future prevention and treatment of smoking-related bone homeostasis imbalance.


Assuntos
Ferroptose , Osteoporose , Ratos , Animais , Nicotiana/efeitos adversos , Osteogênese , Osteoporose/etiologia , Ferro/metabolismo
7.
J Periodontal Res ; 58(5): 1082-1095, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37533377

RESUMO

BACKGROUND AND OBJECTIVES: Cigarette smoking has been reported as an independent risk factor for periodontitis. Tobacco toxins affect periodontal tissue not only locally but also systemically, leading to the deterioration and recurrence of periodontitis. However, the mechanism of cigarette smoke-related periodontitis (CSRP) is unclear and thus lacks targeted treatment strategies. Quercetin, a plant-derived polyphenolic flavonoid, has been reported to have therapeutic effects on periodontitis due to its documented antioxidant activity. This study aimed to evaluate the effects of quercetin on CSRP and elucidated the underlying mechanism. METHODS: The cigarette smoke-related ligature-induced periodontitis mouse model was established by intraperitoneal injection of cigarette smoke extract (CSE) and silk ligation of bilateral maxillary second molars. Quercetin was adopted by gavage as a therapeutic strategy. Micro-computed tomography was used to evaluate the alveolar bone resorption. Immunohistochemistry detected the oxidative stress and autophagy markers in vivo. Cell viability was determined by Cell Counting Kit-8, and oxidative stress levels were tested by 2,7-dichlorodihydrofluorescein diacetate probe and lipid peroxidation malondialdehyde assay kit. Alkaline phosphatase and alizarin red staining were used to determine osteogenic differentiation. Network pharmacology analysis, molecular docking, and western blot were utilized to elucidate the underlying molecular mechanism. RESULTS: Alveolar bone resorption was exacerbated and oxidative stress products were accumulated during CSE exposure in vivo. Oxidative stress damage induced by CSE caused inhibition of osteogenic differentiation in vitro. Quercetin effectively protected the osteogenic differentiation of human periodontal ligament cells (hPDLCs) and periodontal tissue by upregulating the expression of Beclin-1 thus to promote autophagy and reduce oxidative stress damage. CONCLUSION: Our results established a role of oxidative stress damage and autophagy dysfunction in the mechanism of CSE-induced destruction of periodontal tissue and hPDLCs, and provided a potential application value of quercetin to ameliorate CSRP.


Assuntos
Reabsorção Óssea , Fumar Cigarros , Periodontite , Camundongos , Animais , Humanos , Quercetina/farmacologia , Quercetina/uso terapêutico , Osteogênese , Fumar Cigarros/efeitos adversos , Simulação de Acoplamento Molecular , Microtomografia por Raio-X , Periodontite/metabolismo , Diferenciação Celular , Autofagia , Células Cultivadas
8.
Langmuir ; 39(34): 12260-12269, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37582181

RESUMO

Adsorbate transport during the electrochemical process mostly follows the electric-field direction or the high-to-low direction along the concentration gradient and thus often limits the reactant concentration at the adsorption site and requires specific mechanical or chemical bonds of adsorbates to trigger local excess aggregation for advanced framework structure assembly. Herein, we have discovered an active pumping channel during electrochemical adsorption of a manganese colloid, which follows a low-to-high direction inverse concentration gradient. It triggers surface excess micelle aggregation with even over 16-folds higher concentration than that in bulk owing to hydrogen-bonding difference of the micelle surface between in bulk and at the water surface. Micelles in the channel exhibit unique polymerization behaviors by directly polymerizing monomer micelles to form highly catalytic MnO2 of dendritic frameworks, which can serve as a scalable thin-layer aqueous-phase reactor. It increases the understanding of the interface-dependent dynamic nature of micelle or more adsorbates and inspires transformative synthesizing approaches for advanced oxide materials.

9.
ACS Biomater Sci Eng ; 9(8): 4735-4746, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37428711

RESUMO

Extracellular matrix (ECM) stiffness is a key stimulus affecting cellular differentiation, and osteoblasts are also in a three-dimensional (3D) stiff environment during the formation of bone tissues. However, it remains unclear how cells perceive matrix mechanical stiffness stimuli and translate them into intracellular signals to affect differentiation. Here, for the first time, we constructed a 3D culture environment by GelMA hydrogels with different amino substitution degrees and found that Piezo1 expression was significantly stimulated by the stiff matrix with high substitution; meanwhile, the expressions of osteogenic markers OSX, RUNX2, and ALP were also observably improved. Moreover, knockdown of Piezo1 in the stiff matrix revealed significant reduction of the abovementioned osteogenic markers. In addition, in this 3D biomimetic ECM, we also observed that Piezo1 can be activated by the static mechanical conditions of the stiff matrix, leading to the increase of the intracellular calcium content and accompanied with a continuous change in cellular energy levels as ATP was consumed during cellular differentiation. More surprisingly, we found that in the 3D stiff matrix, intracellular calcium as a second messenger promoted the activation of the AMP-activated protein kinase (AMPK) and unc-51-like autophagy-activated kinase 1 (ULK1) axis and modestly modulated the level of autophagy, bringing it more similar to differentiated osteoblasts, with increased ATP energy metabolism consumption. Our study innovatively clarifies the regulatory role of the mechanosensitive ion channel Piezo1 in a static mechanical environment on cellular differentiation and verifies the activation of the AMPK-ULK1 axis in the cellular ATP energy metabolism and autophagy level. Collectively, our research develops the understanding of the interaction mechanisms of biomimetic extracellular matrix biomaterials and cells from a novel perspective and provides a theoretical basis for bone regeneration biomaterials design and application.


Assuntos
Proteínas Quinases Ativadas por AMP , Osteogênese , Trifosfato de Adenosina , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia/genética , Materiais Biocompatíveis , Cálcio , Diferenciação Celular/genética , Osteogênese/genética , Animais , Camundongos
10.
J Nanobiotechnology ; 21(1): 229, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468894

RESUMO

The inflammatory immune environment surrounding titanium bone implants determines the formation of osseointegration, and nanopatterning on implant surfaces modulates the immune microenvironment in the implant region. Among many related mechanisms, the mechanism by which nanopatterning controls macrophage inflammatory response still needs to be elucidated. In this paper, we found that inhibition of the nuclear envelope protein lamin A/C by titania nanotubes (TNTs) reduced the macrophage inflammatory response. Knockdown of lamin A/C reduced macrophage inflammatory marker expression, while overexpression of lamin A/C significantly elevated inflammatory marker expression. We further found that suppression of lamin A/C by TNTs limited actin polymerization, thereby reducing the nuclear translocation of the actin-dependent transcriptional cofactor MRTF-A, which subsequently reduced the inflammatory response. In addition, emerin, which is a key link between lamin A/C and actin, was delocalized from the nucleus in response to mechanical stimulation by TNTs, resulting in reduced actin organization. Under inflammatory conditions, TNTs exerted favourable osteoimmunomodulatory effects on the osteogenic differentiation of mouse bone marrow-derived stem cells (mBMSCs) in vitro and osseointegration in vivo. This study shows and confirms for the first time that lamin A/C-mediated nuclear mechanotransduction controls macrophage inflammatory response, and this study provides a theoretical basis for the future design of immunomodulatory nanomorphologies on the surface of metallic bone implants.


Assuntos
Lamina Tipo A , Nanotubos , Camundongos , Animais , Actinas , Osteogênese , Mecanotransdução Celular , Macrófagos , Titânio/farmacologia , Propriedades de Superfície
11.
Mater Today Bio ; 20: 100661, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37229211

RESUMO

Matrix stiffness plays an important role in determining cell differentiation. The expression of cell differentiation-associated genes can be regulated by chromatin remodeling-mediated DNA accessibility. However, the effect of matrix stiffness on DNA accessibility and its significance for cell differentiation have not been investigated. In this study, gelatin methacryloyl (GelMA) hydrogels with different degrees of substitution were used to simulate soft, medium, and stiff matrices, and it was found that a stiff matrix promoted osteogenic differentiation of MC3T3-E1 cells by activating the Wnt pathway. In the soft matrix, the acetylation level of histones in cells was decreased, and chromatin condensed into a closed conformation, affecting the activation of ß-catenin target genes (Axin2, c-Myc). Histone deacetylase inhibitor (TSA) was used to decondense chromatin. However, there was no significant increase in the expression of ß-catenin target genes and the osteogenic protein Runx2. Further studies revealed that ß-catenin was restricted to the cytoplasm due to the downregulation of lamin A/C in the soft matrix. Overexpression of lamin A/C and concomitant treatment of cells with TSA successfully activated ß-catenin/Wnt signaling in cells in the soft matrix. The results of this innovative study revealed that matrix stiffness regulates cell osteogenic differentiation through multiple pathways, which involve complex interactions between transcription factors, epigenetic modifications of histones, and the nucleoskeleton. This trio is critical for the future design of bionic extracellular matrix biomaterials.

12.
Adv Healthc Mater ; 12(15): e2203106, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36906927

RESUMO

The mitochondrial permeability transition (mPT) directly affects mitochondrial function in macrophages. Under inflammatory conditions, mitochondrial calcium ion (mitoCa2+ ) overload triggers the persistent opening of mPT pores (mPTPs), further aggravating Ca2+ overload and increasing reactive oxygen species (ROS) to form an adverse cycle. However, there are currently no effective drugs targeting mPTPs to confine or unload excess Ca2+ . It is novelly demonstrated that the initiation of periodontitis and the activation of proinflammatory macrophages depend on the persistent overopening of mPTPs, which is mainly triggered by mitoCa2+ overload and facilitates further mitochondrial ROS leakage into the cytoplasm. To solve the above problems, mitochondrial-targeted "nanogluttons" with PEG-TPP conjugated to the surface of PAMAM and BAPTA-AM encapsulated in the core are designed. These nanogluttons can efficiently "glut" Ca2+ around and inside mitochondria to effectively control the sustained opening of mPTPs. As a result, the nanogluttons significantly inhibit the inflammatory activation of macrophages. Further studies also unexpectedly reveal that the alleviation of local periodontal inflammation in mice is accompanied by diminished osteoclast activity and reduced bone loss. This provides a promising strategy for mitochondria-targeted intervention in inflammatory bone loss in periodontitis and can be extended to treat other chronic inflammatory diseases associated with mitoCa2+ overload.


Assuntos
Cálcio , Periodontite , Camundongos , Animais , Espécies Reativas de Oxigênio , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Mitocôndrias , Íons , Periodontite/tratamento farmacológico
13.
Front Immunol ; 14: 1090241, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776850

RESUMO

Background: In the absence of effective measures to predict steroid responsiveness, patients with nonhereditary steroid-resistant nephrotic syndrome (SRNS) have a significantly increased risk of progression to end-stage renal disease. In view of the poor outcomes of SRNS, it is urgent to identify the steroid responsiveness of idiopathic nephrotic syndrome (INS) early. Methods: To build a prediction model for SRNS, we collected 91 subjects; 57 of them had steroid-sensitive nephrotic syndrome, and the others had SRNS. For each subject, 87 clinical variables were measured. In general, only a small part of these variables is informative to SRNS. Thus, we proposed a new variable selection framework including a penalized regression approach (named MLR+TLP) to select variables having a linear effect on the SRNS and a nonparametric screening method (MAC) to select variables having a nonlinear marginal (joint) effect on the SRNS. Thereafter, considering the correlation between selected clinical variables, we used a stepwise method to build our final model for predicting SRNS. In addition, a statistical testing procedure is proposed to test the overfitting of the proposed model. Results: Twenty-six clinical variables were selected to be informative to SRNS, and an SVM model was built to predict SRNS with a leave-one-out cross-validation (LOO-CV) accuracy of 95.2% (overfitting p value<0.005). To make the model more useful, we incorporate prior medical information into the model and consider the correlation between selected variables. Then, a reduced SVM model including only eight clinical variables (erythrocyte sedimentation rate, urine occult blood, percentage of neutrophils, immunoglobulin A, cholesterol, vinculin autoantibody, aspartate aminotransferase, and prolonged prothrombin time) was built to have a LOO-CV accuracy of 92.8% (overfitting p value<0.005). The validation cohort showed that the reduced model obtained an accuracy of 94.0% (overfitting p value<0.005), with a sensitivity of 90.0% and a specificity of 96.7%. Notably, vinculin autoantibody is the only podocyte autoantibody included in this model. It is linearly related to steroid responsiveness. Finally, our model is freely available as a user-friendly web tool at https://datalinkx.shinyapps.io/srns/. Conclusion: The SRNS prediction model constructed in this study comprehensively and objectively evaluates the internal conditions and disease status of INS patients and will provide scientific guidance for selecting treatment methods for children with nonhereditary SRNS.


Assuntos
Nefrose Lipoide , Síndrome Nefrótica , Criança , Humanos , Síndrome Nefrótica/diagnóstico , Síndrome Nefrótica/tratamento farmacológico , Vinculina , Esteroides/uso terapêutico , Colesterol , Nefrose Lipoide/tratamento farmacológico
14.
Front Bioeng Biotechnol ; 11: 1113367, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761293

RESUMO

Purpose: In order to overcome the problem that conventional pharmacological treatments of periodontitis cannot effectively synergizing antimicrobial and immunomodulation, inspired by the critical role of toll-like receptor 4 (TLR4) in bacterial recognition and immune activation, we demonstrated a combined antibacterial-immunoregulatory strategy based on biomimetic nanoparticles. Methods: Functioned cell membranes and silk fibroin nanoparticles (SNs) loaded with minocycline hydrochloride (Mino) were used to prepare a biomimetic nanoparticle (MSNCs). SNs and MSNCs were characterized by Scanning Electron Microscope, size, zeta potential, dispersion index. At the same time, SNs were characterized by cell counting kit-8 and real-time Polymerase Chain Reaction (RT-PCR). TLR4-expressing cell membranes were characterized by RT-PCR and western blot (WB). Cell membrane coating was characterized by Transmission Electron Microscope (TEM), the Bradford staining and WB. Then, Laser confocal, flow cytometry and agar plate coating were evaluated in vitro with antibacterial effects, RT-PCR was simultaneously evaluated with immunoregulatory effects. Finally, Anti-inflammatory treatment of MSNCs was evaluated in a ligature-induced periodontitis (LIP) mouse model. Results: Successfully prepared cell membranes overexpressing TLR4 and constructed MSNCs. In vitro studies had shown that MSNCs effectively targeted bacteria via TLR4 and acted as molecular decoys to competitively neutralize lipopolysaccharide (LPS) in the microenvironment as well as inhibit inflammatory activation of macrophages. In vivo, MSNCs effectively attenuated periodontal tissue inflammation and alveolar bone loss in a LIP mouse model. Conclusion: MSNCs have good targeted antibacterial and immunoregulatory effects, and provide a new and effective strategy for the treatment of periodontitis and have good potential for application in various types of pathogenic bacterial infections.

15.
J Clin Periodontol ; 50(3): 368-379, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36356944

RESUMO

AIM: Electroacupuncture (EA) regulates distant body physiology through somatic sensory autonomic reflexes, balances the microbiome, and can promote the release of immune cells into bloodstream, thereby inhibiting severe systemic inflammation. This makes it possible to use EA as an integrated treatment for periodontitis. MATERIALS AND METHODS: In this study, EA was applied to the ST36 acupoints in a ligature-induced periodontitis (LIP) mouse model. Then the effects of EA on periodontal myeloid cells, cytokines, and the microbiome were comprehensively analysed using flow cytometry, quantitative Polymerase Chain Reaction (PCR), and 16 S sequencing. RESULTS: Results demonstrated that EA could significantly relieve periodontal bone resorption. EA also suppressed the infiltration of macrophages and neutrophils, reduced gene expression of the pro-inflammatory cytokines IL-1ß, IL-6, IL-17 and TNF-α, and increased expression of the anti-inflammatory factors IL-4 and IL-10 in periodontal tissues. Moreover, composition of the periodontal microbiome was regulated by EA, finding that complex of microbiota, including supragingival Veillonella, subgingival Streptococcus, and subgingival Erysipelatoclostridium, were significantly reduced. Meanwhile, nitrate and nitrate-related activities of subgingival microbiota were reversed. Network analysis revealed close relationships among Veillonella, Streptococcus, and Bacteroides. CONCLUSIONS: Our study indicates that EA can effectively alleviate inflammation and bone resorption in LIP mice, potentially via the regulation of myeloid cells, cytokines, and periodontal microbiome.


Assuntos
Perda do Osso Alveolar , Eletroacupuntura , Microbiota , Periodontite , Camundongos , Animais , Perda do Osso Alveolar/prevenção & controle , Eletroacupuntura/métodos , Neutrófilos , Nitratos , Periodontite/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Macrófagos
16.
Odontology ; 111(1): 217-227, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36094685

RESUMO

This study aimed to evaluate somatosensory function in Chinese patients with trigeminal neuralgia (TN) using a standard quantitative sensory testing (QST) battery and electrophysiological tests consisting of contact heat-evoked potentials (CHEPs) and blink reflex (BR). Twenty patients with TN and 20 sex- and age-matched healthy controls were recruited for this study. A standard QST protocol recommended by the German Research Network on Neuropathic Pain was carried out on the patients' painful and contralateral faces, the controls' right faces, and all participants' right hands. The CHEPs and BR were recorded at the Cz electrode and bilateral lower bellies of the orbicularis oculi, respectively, with thermal stimuli applied to both sides of the patient's face and the control's right face. The cold detection threshold, heat pain threshold, and mechanical pain threshold on the painful face were lower than those of healthy controls (P < 0.05), whereas the cold pain threshold and mechanical detection threshold were higher (P < 0.05) on the painful faces than those of the contralateral faces from patients or healthy controls. Mechanical pain sensitivity was higher in both test sites than in healthy controls (P < 0.05). Significantly longer N latencies (P < 0.05) and lower N-P amplitudes (P < 0.01) were detected in the patients' painful sites than in the contralateral sites and those of healthy controls. Comprehensive somatosensory abnormalities were found in painful facial sites in patients with TN, suggesting disturbances in the processing of somatosensory stimuli. Deficiencies in electrophysiological tests further revealed unilaterally impaired function of the trigeminal pathway in TN patients.


Assuntos
Neuralgia do Trigêmeo , Humanos , Neuralgia do Trigêmeo/diagnóstico , População do Leste Asiático , Limiar da Dor/fisiologia , Medição da Dor/métodos , Povo Asiático
17.
Am J Transl Res ; 14(7): 4657-4665, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958487

RESUMO

OBJECTIVE: To determine the diagnostic value of cardiac magnetic resonance imaging (CMRI) for myocardial fibrosis (MF) in patients with heart failure (HF) and its predictive value for prognosis. METHODS: A total of 180 patients with heart failure who were hospitalized in the Cardiology Department of The First People's Hospital of Shangqiu City from September 2019 to May 2021 were selected and assigned to Group B (n=80) given levosimendan and Group A (n=100) given levosimendan combined with ivabradine hydrochloride. The cardiac function indicators (left ventricular end-systolic volume (LVESV), left ventricular ejection fraction (LVEF), and left ventricular end-systolic diameter (LVESD) were measured by nuclear magnetic resonance (MRI). Myocardial fibrosis (MF)-related indicators (pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen (ICTP), N-terminal propeptide of procollagen type III (PIIINP), connective tissue growth factor (CTGF), and hyaluronic acid (HA), inflammatory factors (Hs-CRP and IL-8) were measured using ELISA. Quality of life (QoL) and physical recovery (6-min walking test (6MWT), Fugl-Meyer Assessment (FMA), and Barthel index) of the two groups were compared. The late gadolinium enhancement (LGE) was used to analyze the occurrence of MF in patients. The patients were further divided into the LGE (+) group (cases) and LGE (-) group (cases). The changes of cardiac function indicators before treatment were analyzed, and their predictive value was analyzed. RESULTS: Compared with Group B, Group A showed a lower incidence of complications, and presented a higher LVEF level and lower levels of LVESV, LVESD, ICTP, PIIINP, CTGF, HA, LN, and inflammatory factors. The area under the curves of LVESV, LVESD, and LVEF in predicting MF were all >0.7. CONCLUSION: Levosimendan combined with ivabradine hydrochloride can effectively alleviate MF in patients with MF, and CMRI has a good predictive value for MF in such patients, which is worthy of clinical promotion.

18.
J Clin Periodontol ; 49(9): 872-883, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35734921

RESUMO

AIM: To investigate the feasibility of predicting dental implant loss risk with deep learning (DL) based on preoperative cone-beam computed tomography. MATERIALS AND METHODS: Six hundred and three patients who underwent implant surgery (279 high-risk patients who did and 324 low-risk patients who did not experience implant loss within 5 years) between January 2012 and January 2020 were enrolled. Three models, a logistic regression clinical model (CM) based on clinical features, a DL model based on radiography features, and an integrated model (IM) developed by combining CM with DL, were developed to predict the 5-year implant loss risk. The area under the receiver operating characteristic curve (AUC) was used to evaluate the model performance. Time to implant loss was considered for both groups, and Kaplan-Meier curves were created and compared by the log-rank test. RESULTS: The IM exhibited the best performance in predicting implant loss risk (AUC = 0.90, 95% confidence interval [CI] 0.84-0.95), followed by the DL model (AUC = 0.87, 95% CI 0.80-0.92) and the CM (AUC = 0.72, 95% CI 0.63-0.79). CONCLUSIONS: Our study offers preliminary evidence that both the DL model and the IM performed well in predicting implant fate within 5 years and thus may greatly facilitate implant practitioners in assessing preoperative risks.


Assuntos
Aprendizado Profundo , Implantes Dentários , Tomografia Computadorizada de Feixe Cônico , Implantes Dentários/efeitos adversos , Humanos , Curva ROC , Estudos Retrospectivos , Fatores de Risco
19.
Bioact Mater ; 18: 254-266, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35387157

RESUMO

Precise and controlled drug delivery to treat periodontitis in patients with diabetes remains a significant clinical challenge. Nanoparticle-based drug delivery systems offer a potential therapeutic strategy; however, the low loading efficiency, non-responsiveness, and single effect of conventional nanoparticles hinder their clinical application. In this study, we designed a novel self-assembled, dual responsive, and dual drug-loading nanocarrier system, which comprised two parts: the hydrophobic lipid core formed by 1, 2-Distearoyl-sn-glycero-3-phosphoethanolamine-Poly (ethylene glycol) (DSPE-PEG) loaded with alpha-lipoic acid (ALA); and a hydrophilic shell comprising a poly (amidoamine) dendrimer (PAMAM) that electrostatically adsorbed minocycline hydrochloride (Mino). This unique design allows the controlled release of antioxidant/ALA under lipase stimulation from periodontal pathogens and antimicrobial/Mino under the low pH of the inflammatory microenvironment. In vivo and in vitro studies confirmed that this dual nanocarrier could inhibit the formation of subgingival microbial colonies while promoting osteogenic differentiation of cells under diabetic pathological conditions, and ameliorated periodontal bone resorption. This effective and versatile drug-delivery strategy has good potential applications to inhibit diabetes-associated periodontal bone loss.

20.
Adv Healthc Mater ; 11(12): e2102807, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35285169

RESUMO

Bone defects have been increasingly prevalent around the globe and traditional bone substitutes are constantly limited by low abundance and biosafety due to their animal-based resources. Plant-based scaffolds are currently studied as a green candidate but the bioinertia of cellulose to mammalian cells leads to uncertain bone regeneration. Inspired by the cross-kingdom adhesion of plants and bacteria, this work proposes a concept of a novel plant bone substitute, involving coating decellularized plant with nano amyloids and nano hydroxyapatites, to bridge the plant scaffold and animal tissue regeneration. Natural microporosity of plants can guide alignment of mammalian cells into various organ-like structures. Taking advantage of the bioactive nano amyloids, the scaffolds drastically promote cell adhesion, viability, and proliferation. The enhanced bio-affinity is elucidated as positively charged nano amyloids and serum deposition on the nanostructure. Nano-hydroxyapatite crystals deposited on amyloid further prompt osteogenic differentiation of pre-osteoblasts. In vivo experiments prove successful trabeculae regeneration in the scaffold. Such a hierarchical design leverages the dedicated microstructure of natural plants and high bioactivity of nano amyloid/hydroxyapatite coatings, and addresses the abundant resource of bone substitutes. Not limited to their current application, plant materials functionalized with nano amyloid/hydroxyapatite coatings allow many cross-kingdom tissue engineering and biomedical applications.


Assuntos
Substitutos Ósseos , Durapatita , Animais , Regeneração Óssea , Substitutos Ósseos/química , Durapatita/química , Durapatita/farmacologia , Hidroxiapatitas/química , Mamíferos , Osteoblastos , Osteogênese , Engenharia Tecidual , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA