Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gastrointest Endosc ; 99(1): 108-115.e1, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37739237

RESUMO

BACKGROUND AND AIMS: Ultrathin EGD (UT-EGD) is an ideal tool for unsedated upper GI examination and pediatric gastroenterology but is rarely competent for EUS miniprobe (EUS-MP). We developed a UT-EGD US method (UT-EUS) and verified its clinical application value through animal experiments. METHODS: Five Bama miniature pigs were selected. Using an acoustic medium, we performed US on the duodenum, stomach, and esophagus, respectively, with conventional 20-MHz EUS miniprobe (EUS-MP-20), 20-MHz UT-EUS (UT-EUS-20), and 30-MHz UT-EUS (UT-EUS-30). The times to acquire 5 consecutive stable US images, number of identifiable wall layers, and quality and penetration depth of the images were recorded. RESULTS: No significant differences were found in the time required to obtain images between EUS-MP-20 and UT-EUS-20 at each site (P > .05). UT-EUS-30 showed more wall levels than UT-EUS-20 (P < .05). No significant differences were noted between EUS-MP-20 and UT-EUS-20 in imaging quality and penetration depth (P > .05). CONCLUSIONS: The UT-EUS is easy to use with a satisfactory image quality and has potential clinical application value.


Assuntos
Endoscopia do Sistema Digestório , Ultrassom , Humanos , Criança , Suínos , Animais , Endoscopia do Sistema Digestório/métodos , Endoscópios , Endossonografia/métodos , Esôfago/diagnóstico por imagem
2.
Small ; 19(49): e2304655, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37590396

RESUMO

Developing efficient and low-cost noble-free metal electrocatalysts is an urgent requirement. Herein, a one-step, solid-state template-assisted method for fabricating isolated half-metallic diatomic M, Zn─N─C (M═Fe, Co, and Ni) catalysts is reported. In particular, the fabricated Fe, Zn─N─C structure exhibits superior oxygen reduction reaction capabilities with a half-wave potential of 0.867 V versus RHE. The Mossbauer spectra reveal that the Fe, Zn─N─C half-metallic diatomic catalyst has a large proportion of the D2 site (ferrous iron with a medium spin state). Density functional theory (DFT) reveals that in Fe, Zn─N─C structures, the zinc sites play a unique role in accelerating the protonation process of O2 in ORR. In assembled zinc-air batteries, a maximum power density of 138 mW cm-2 and a capacity of 748 mAh g zn-1 can be obtained. This work fabricates a series of efficient M, Zn─N─C diatomic electrocatalysts, and the developed solid-state reaction method can hopefully apply in other energy conversion and storage fields.

3.
Inorg Chem ; 62(35): 14439-14447, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37595269

RESUMO

The detection of the major biomarker of Bacillus anthracis, 2,6-dipicolinic acid (DPA), has attracted great interest in recent years. In this work, mixed-lanthanide metal-organic frameworks (M'LnMOFs), TbxEu1-x-cppa (cppa = 5-(5-carboxypyridin-3-yl)isophthalic acid), with different Tb/Eu ratios, were solvothermally synthesized. The results reveal that ratiometric fluorescent probe [Tb0.533Eu0.467-(Hcppa)1.5(H2O)(DMF)]·3H2O is water and acid-base stable and exhibits excellent sensitivity (LOD = 2.286 µM), high selectivity, and fast response (<2 min) for the detection of DPA. Due to the blocked energy transfer from Tb3+ to Eu3+ and the inner filter effect upon the addition of DPA, the fluorescent probe shows a distinct color change from orange-red to green. Furthermore, the visual detection of DPA was realized by identifying the RGB values of MOF-based agarose hydrogel films via a smartphone, highlighting the practical application of the fluorescent probe for DPA detection under aqueous solution conditions.

4.
J Org Chem ; 88(9): 6203-6208, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37058587

RESUMO

A method for the C(sp3)-H alkenylation of N-aryl-tetrahydroisoquinoline (THIQ) has been developed by the combination of electrooxidation and a copper catalyst. The corresponding products were obtained with good to excellent yields under mild conditions. Besides, the addition of TEMPO as an electron mediator is crucial to this transformation, since the oxidative reaction could proceed under a low electrode potential. In addition, the catalytic asymmetric variant has also been demonstrated with good enantioselectivity.

5.
Dalton Trans ; 52(13): 4142-4151, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36891679

RESUMO

High entropy alloys (HEAs) with a tunable alloy composition and fascinating synergetic effects between various metals have attracted significant attention in the field of electrocatalysis, but their potential is limited by inefficient and unscalable fabrication methodologies. This work proposes a novel solid-state thermal reaction method to synthesise HEA nanoparticles encapsulated in an N-doped graphitised hollow carbon tube. This facile method is simple and efficient and involves no use of organic solvents during the fabrication process. The synthesized HEA nanoparticles are confined by the graphitised hollow carbon tube, which is possibly beneficial for preventing the aggregation of alloy particles during the oxygen reduction reaction (ORR). In a 0.1 M KOH solution, the HEA catalyst FeCoNiMnCu-1000(1 : 1) exhibits an onset and half-wave potential of 0.92 V and 0.78 V (vs. RHE), respectively. We assembled a Zn-Air battery with FeCoNiMnCu-1000 as a catalyst for the air electrode, and a power density of 81 mW cm-2 and a long-term durability of >200 h were achieved, which is comparable to the performance of the state-of-the-art catalyst Pt/C-RuO2. This work herein offers a scalable and green method for synthesising multinary transition metal-based HEAs and highlights the potential of HEA nanoparticles as electrocatalysts for energy storage and conversion.

6.
Inorg Chem ; 62(14): 5652-5659, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36961976

RESUMO

The design of high-performance luminescent MOF thermometers with multi-operation modes has been long sought but remains a formidable challenge. In this work, for the first time, we present a multimodal luminescent ratiometric thermometer based on the single-lanthanide metal-organic framework (MOF) DyTPTC-2Me (H4TPTC-2Me = 2',5'-dimethyl-[1,1':4',1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid). It not only has the characteristic luminescence of Dy3+ in which the atomic transitions from the 4I15/2 and 4F9/2 states (thermally coupled energy levels, TCELs) are included but also emits ligand fluorescence due to the efficient energy back-transfer of Dy3+ to the ligand, thus allowing accurate non-invasive determination of temperature by different modes. In particular, the TCEL-based emissions of the Dy3+ ions give ideal signals for measuring the temperature in the 303-423 K range. The emissions of the ligand and Dy3+ (4F9/2 → 6H13/2) are used for temperature sensing in the range of 423 to 503 K. Both two modes feature promising thermometric performance, including high relative sensitivity, high temperature resolution, and excellent repeatability. Their combination is thus beneficial to achieve more accurate temperature detection over a broad temperature range, which can broaden the application scope of the ratiometric luminescent thermometers.

7.
Int J Hyperthermia ; 39(1): 1344-1357, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36223887

RESUMO

PURPOSE: The catheter-based ultrasound (CBUS) can reach the target tissue directly and achieve rapid treatment. The frequency shift keying (FSK) signal is proposed to regulate and evaluate tumor ablation by a miniaturized dual-frequency transducer. METHODS: A dual-frequency transducer prototype (3 × 7 × 0.4 mm) was designed and fabricated for the CBUS applicator (OD: 3.8 mm) based on the fundamental frequency of 5.21 MHz and the third harmonic frequency of 16.88 MHz. Then, the acoustic fields and temperature field distributions using the FSK signals (with 0, 25, 50, 75, and 100% third harmonic frequency duty ratios) were simulated by finite element analysis. Finally, tissue ablation and temperature monitoring were performed in phantom and ex vivo tissue, respectively. RESULTS: At the same input electrical power (20 W), the output acoustic power of the fundamental frequency of the transducer was 10.03 W (electroacoustic efficiencies: 50.1%), and that of the third harmonic frequency was 6.19 W (30.6%). As the third harmonic frequency duty ratios increased, the shape of thermal lesions varied from strip to droplet in simulated and phantom experimental results. The same trend was observed in ex vivo tests. CONCLUSION: Dual-frequency transducers excited by the FSK signal can control the morphology of lesions. SIGNIFICANCE: The acoustic power deposition of CBUS was optimized to achieve precise ablation.


Assuntos
Hipertermia Induzida , Transdutores , Acústica , Desenho de Equipamento , Hipertermia Induzida/métodos , Imagens de Fantasmas , Ultrassonografia
8.
J Colloid Interface Sci ; 628(Pt A): 642-651, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35940148

RESUMO

Heterostructure materials, as newborn electrode materials for rechargeable batteries, are attracting increasing attention due to their robust architectures and superior electrochemical performances. It is widely believed that the inner electric field induced at the interface can improve the electric conductivity and ion diffusion kinetics, thus enhancing the long-term stability and high-rate performance of the batteries. Although much progress is made on heterostructure construction, the performance of the batteries is still far from satisfying the commercial applications. In this work, a new type of SnO2/SnSx (x = 1, 1.5) heterostructure embedded in carbon framework (C@SnO2/SnSx) is constructed via a facile sulfidation process. Compared to a single heterojunction, the multi-heterojunctions generated at SnO2/SnSx interface can induce an intensified built-in electric field, which promotes charge transportation and reaction kinetics of the electrode for Na-ions storage. Upon the sodiation process, the induced intensified electric field drives Na ions from Sn2S3 or SnO2 to SnS, while an inverse transportation of Na ions are accelerated upon the desodation process. As a result, C@SnO2/SnSx exhibits an outstanding reversible capacity of 510 mA h g-1 after 300 cycles at 200 mA g-1.

9.
Inorg Chem ; 61(34): 13627-13636, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-35980758

RESUMO

Excessive content of fluoride ions (F-) in water will lead to water pollution and endanger human health, so the research on the method of low-cost, rapid, and efficient detection of F- is of particular significance. In this work, an amino-functionalized ligand with an appropriate triplet energy excited state, 2'-amino-[1,1':4',1″-terphenyl]-3,3″,5,5″-tetracarboxylic acid (H4TPTC-NH2), was selected to construct a luminescent single-lanthanide metal-organic framework, EuTPTC-NH2, with uncoordinated amino groups for the detection of F-. Based on host-guest interactions, that is, hydrogen bonds formed between the free amino groups and F- ions, EuTPTC-NH2 was developed as a ratiometric fluorescence probe for F- detection with good anti-interference ability, low detection limit, high water stability, and selectivity. It was found that EuTPTC-NH2 has an excellent linear response to F- in the concentration range of 0-80 µM with high sensitivity and a low detection limit of 11.26 µM. A hydrogel membrane based on the combination of EuTPTC-NH2 and agarose was also prepared for the quantitative visual detection of F- in water.


Assuntos
Elementos da Série dos Lantanídeos , Estruturas Metalorgânicas , Corantes Fluorescentes , Fluoretos , Flúor , Humanos , Água
10.
Ultrasonics ; 114: 106404, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33714767

RESUMO

This paper reports on the fabrication of 1-3 piezocomposite with hexagonal pillars for high frequency ultrasonic transducer based on the cold ablation technique. The piezocomposite with hexagonal pillars was designed, simulated, and fabricated using an ultraviolet picosecond laser. It performs better than the piezocomposite with other pillar shapes like square. The edge length and height of the hexagonal PZT pillar were 10 µm and 36 µm, the width of the kerf was about 5 µm. The 1-3 piezocomposite with a resonance frequency of 51.2 MHz and a coupling coefficient of 0.69 was fabricated. The transducer with fabricated 1-3 piezocomposite was prototyped and characterized. Compared to the conventional dice-and-fill technique, the cola ablation process allows for the manufacturing of 1-3 piezocomposites with higher variability of pillar design and distribution as well as smaller structural size. It suggests that the cold ablation process proves to be suitable for the fabrication of high frequency composite and transducers.

11.
Artigo em Inglês | MEDLINE | ID: mdl-33591917

RESUMO

In this article, a PZT/Epoxy 1-3 piezoelectric composite based on picosecond laser etching technology is developed for the fabrication of high-frequency ultrasonic transducer. The design, fabrication, theoretical analysis, and performance of the piezocomposite and transducer are presented and discussed. According to the test results, the area of the PZT pillar is [Formula: see text], the average width of the kerf is [Formula: see text], and the thickness of the piezocomposite is [Formula: see text]. The fabricated 1-3 piezocomposite has a resonant frequency of 46.5 MHz, a parallel resonant frequency of 65 MHz, and an electromechanical coupling coefficient of 0.73. According to the wires phantom imaging, its imaging resolution can reach [Formula: see text]. This study shows that the proposed picosecond laser micromachining technique can be applied in the fabrication of high frequency 1-3 piezocomposite and transducer.

12.
Sensors (Basel) ; 21(2)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477606

RESUMO

Ultrasound plane wave imaging technology has been applied to more clinical situations than ever before because of its rapid imaging speed and stable imaging quality. Most transducers used in plane wave imaging are linear arrays, but their structures limit the application of plane wave imaging technology in some special clinical situations, especially in the endoscopic environment. In the endoscopic environment, the size of the linear array transducer is strictly miniaturized, and the imaging range is also limited to the near field. Meanwhile, the near field of a micro linear array has serious mutual interferences between elements, which is against the imaging quality of near field. Therefore, we propose a new structure of a micro ultrasound linear array for plane wave imaging. In this paper, a theoretical comparison is given through sound field and imaging simulations. On the basis of primary work and laboratory technology, micro uniform and non-uniform linear arrays were made and experimented with the phantom setting. We selected appropriate evaluation parameters to verify the imaging results. Finally, we concluded that the micro non-uniform linear array eliminated the artifacts better than the micro uniform linear array without the additional use of signal processing methods, especially for target points in the near-field. We believe this study provides a possible solution for plane wave imaging in cramped environments like endoscopy.


Assuntos
Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Transdutores , Ultrassonografia
13.
Biomed Res Int ; 2020: 5734932, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32964037

RESUMO

The cryptogenic epilepsy of the neocortex is a disease in which the seizure is accompanied by intense cerebral nerve electrical activities but the lesions are not observed. It is difficult to locate disease foci. Electrocorticography (ECoG) is one of the gold standards in seizure focus localization. This method detects electrical signals, and its limitations are inadequate resolution which is only 10 mm and lack of depth information. In order to solve these problems, our new method with implantable micro ultrasound transducer (MUT) and photoplethysmogram (PPG) device detects blood changes to achieve higher resolution and provide depth information. The basis of this method is the neurovascular coupling mechanism, which shows that intense neural activity leads to sufficient cerebral blood volume (CBV). The neurovascular coupling mechanism established the relationship between epileptic electrical signals and CBV. The existence of mechanism enables us to apply our new methods on the basis of ECoG. Phantom experiments and in vivo experiments were designed to verify the proposed method. The first phantom experiments designed a phantom with two channels at different depths, and the MUT was used to detect the depth where the blood concentration changed. The results showed that the MUT detected the blood concentration change at the depth of 12 mm, which is the position of the second channel. In the second phantom experiments where a PPG device and MUT were used to monitor the change of blood concentration in a thick tube, the results showed that the trend of superficial blood concentration change provided by the PPG device is the same as that provided by the MUT within the depth of 2.5 mm. Finally, in the verification of in vivo experiments, the blood concentration changes on the surface recorded by the PPG device and the changes at a certain depth recorded by the MUT all matched the seizure status shown by ECoG. These results confirmed the effectiveness of the combined micro sensors.


Assuntos
Epilepsia/diagnóstico , Epilepsia/patologia , Convulsões/diagnóstico , Convulsões/patologia , Animais , Eletrocorticografia/instrumentação , Eletrodos Implantados , Humanos , Masculino , Neocórtex/patologia , Ratos , Ratos Sprague-Dawley
14.
Biomed Microdevices ; 22(2): 27, 2020 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-32222836

RESUMO

Conventional flow cytometers employ hydrodynamic focusing method to insure detection accuracy by forcing cells go through detected position. However, an increased flow velocity will significantly reduce detection precision due to a fact that cells will deviate center position and are easily silted in choke point. In an effort to overcome this limitation, a two-dimension ultrasonic particle focusing method are presented in this work to enhance the performance of flow cytometer. Two piezoelectric transducers are used to attach to a 250 µm × 250 µm rectangular fused silica flow channel to realize the modification. Finite element model simulation is performed for parametrical analysis and simplifying experiment design. 3 µm polystyrene fluorescent particles are adopted to test focusing effect. One dimension acoustic focusing is achieved at 2.95 MHz with single focusing node as well as 2, 3, 4 nodes focusing near 6, 9, 12 MHz respectively. The 2D focusing particle stream width in two dimensions is less than 10 µm. Results verified that this method is applicable for Jurkat cells. Sample flow maintains its stability without clogging up even at high sample concentration. Focusing still works at flow velocity over 100 µl/min. All these results certify this acoustic particles focusing method can enhance the performance of hydrodynamic flow cytometer by minor modification.


Assuntos
Acústica , Citometria de Fluxo/instrumentação , Hidrodinâmica , Limite de Detecção , Ondas Ultrassônicas
15.
Zhongguo Yi Liao Qi Xie Za Zhi ; 43(5): 313-317, 2019 Sep 30.
Artigo em Chinês | MEDLINE | ID: mdl-31625324

RESUMO

The ultrasound endoscopic probes with very small size transducers are normally imaging by focused ultrasound beamforming technology. So the imaging frame rate is not very high, which cannot meet the needs of some clinical applications based on high imaging rate. In recent years, plane-wave ultrafast imaging technology can obtain high image frame rate and guarantee the image quality. In this paper, a plane wave ultra-fast imaging technique based on a home-made small line array ultrasound transducer is presented. Feasibility of the method is verified by simulation estimations and phantom experiments. The results show that for the small size transducer design of plane wave ultrafast imaging, it is necessary to fully consider the combination of the array element width and the number of array elements. So that a good plane wave imaging quality can be obtained. It lays a foundation for the ultra-fast imaging of plane wave in the interventional ultrasound imaging and ultrasound endoscopy.


Assuntos
Transdutores , Ultrassonografia , Imagens de Fantasmas , Ultrassonografia/instrumentação
16.
Artigo em Inglês | MEDLINE | ID: mdl-31425028

RESUMO

Based on the Fresnel half-wave band interference and laser engraving, a high-frequency self-focusing piezoelectric composite ultrasound transducer (FPCUT) is presented in this article. The theoretical analysis was performed based on the concept of constructive interference of acoustic waves and the electromechanical response of piezoelectric composites. The calculated and simulation results showed that the FPCUT combined the advantages of the composite transducer and the plate self-focusing transducer and can achieve high electromechanical coupling coefficient (>0.66), low acoustic impedance (~15 MRayl), high intensity, and short focal length. Furthermore, a 30-MHz self-focusing piezoelectric composite transducer prototype was fabricated and tested. It is composed of 11 lead zirconate titanates (PZTs) and ten epoxy annuluses. A UV engraving laser with a linewidth of 10 [Formula: see text] was used in each of the PZTs to form the annuluses, and the kerf among the annuluses was filled with epoxy. The measured center frequency, bandwidth, and focal length were 27 MHz, 50.37%, and 3.7 mm, respectively. A vertical wire phantom was imaged using a fabricated transducer and a contrast flat transducer; the images showed significant improvement in the lateral resolution over a range of 9 mm. Because this self-focusing piezoelectric composite transducer was based on the precise laser engraving systems, the fabrication process was accurate and controllable, which enabled it to have good potential for medical imaging and industrial nondestructive testing applications.

17.
Biomed Res Int ; 2017: 9327270, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29018823

RESUMO

Due to the small aperture of blood vessel, a considerable disadvantage to current intravascular ultrasound (IVUS) imaging transducers is that their lateral imaging resolution is much lower than their axial resolution. To solve this problem, a single-element, 50 MHz, 0.6 mm diameter IVUS transducer with a geometric focus at 3 mm was proposed in this paper. The focusing transducer was based on a geometric-shaped 1-3 piezocomposite. The impedance/phase, pulse echo, acoustic intensity field, and imaging resolution of the focusing transducer were tested. For comparison, a flat IVUS transducer with the same diameter and 1-3 piezocomposite was made and tested too. Compared with their results, the fabricated focusing transducer exhibits broad bandwidth (107.21%), high sensitivity (404 mV), high axial imaging resolution (80 µm), and lateral imaging resolution (100 µm). The experimental results demonstrated that the high frequency geometric focusing piezocomposite transducer is capable of visualizing high axial and lateral resolution structure and improving the imaging quality of related interventional ultrasound imaging.


Assuntos
Ultrassonografia de Intervenção/métodos , Impedância Elétrica , Desenho de Equipamento/métodos , Imagens de Fantasmas , Sensibilidade e Especificidade , Transdutores
18.
Artigo em Inglês | MEDLINE | ID: mdl-25570018

RESUMO

Based on the Fresnel half-wave band interference, a micromachined self-focusing piezoelectric composite ultrasound transducer was proposed in this paper. The theoretical analysis was deduced based on the concept of constructive interference of acoustic waves and electromechanical response of piezoelectric composites. The calculated and simulation results showed that it combined the advantages of composite transducer and plate self-focusing transducer, and can achieve high electromechanical coupling coefficient, low acoustic impedance, high intensity, short focal length and micro size. Because it was based on the micro-electromechanical systems, the fabrication process was accurate and controllable, which made it have good potential for interventional ultrasound imaging, cellular microstructure imaging, skin cancer detection and industrial nondestructive testing applications.


Assuntos
Transdutores , Ultrassonografia de Intervenção , Desenho de Equipamento , Humanos , Sistemas Microeletromecânicos , Modelos Teóricos , Ultrassonografia de Intervenção/instrumentação
19.
Opt Express ; 14(7): 2671-8, 2006 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19516398

RESUMO

Based on multimode interference principle and free-carrier plasma dispersion effect, a SiGe/Si 2-to-4 decoder switch is proposed and simulated. The decoder switch consists of two input single-mode ridge waveguides, a multimode interference section, and four output single-mode ridge waveguides. In the multimode interference section, two index-modulation regions are introduced. Design principle of the decoder switch is described and the device characteristics are demonstrated theoretically by beam propagation method. Simulated results show that the insertion loss of the decoder switch is less than 0.36 dB and the crosstalk is less than -19.7 dB. The device can divert input optical signals to any one of the four output waveguides when a forward bias voltage is applied to the two index-modulation regions.

20.
Opt Express ; 14(7): 2679-89, 2006 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-19516399

RESUMO

Applicability of multimode interference effect and self-imaging principle for terahertz waves in two-dimensional silicon photonic crystal waveguides are investigated by modeling and computation. The results show that the multimode interference effect and the self-imaging principle are applicable for terahertz waves. As an example, a splitter and a filter for terahertz waves have been proposed, calculated and analyzed by finite-difference time-domain method based on the multimode interference effect and the self-imaging principle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA