Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Zhongguo Gu Shang ; 37(7): 700-5, 2024 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-39104072

RESUMO

OBJECTIVE: To investigate the risk factors of postoperative delirium in elderly patients undergoing spine surgery. METHODS: The basic case data of 566 patients who underwent spine surgery under general anesthesia from January 2021 to January 2023 were retrospectively analyzed. There were 296 males and 270 females with an average age of (71.58 ± 4.21) years old. There were 195 cases of cervical spine surgery, 26 cases of thoracic spine surgery and 345 cases of lumbar spine surgery.According to the occurrence of postoperative delirium, the patients were divided into postoperative delirium group(41 patients) and non-delirium group (525 patients). Univariate analysis was used to analyze the possible influencing factors such as gender, age, weight, smoking history, drinking history, surgical site, preoperative anxiety, intraoperative hypotension times, blood loss and so on, and binary Logistic regression was used to analyze the univariate factors with P<0.05. RESULTS: A total of 41 patients developed postoperative delirium. Univariate analysis showed that age (P=0.000), duration of surgery (P=0.039), preoperative anxiety (P=0.001), blood loss (P=0.000), history of opioid use (P=0.003), history of stroke (P=0.005), C-reactive protein (P=0.000), sodium ion(P=0.000) were significantly different between delirium group and non-delirium group. These factors were included in the binary Logistic regression analysis, and the results showed that age [OR=0.729, 95%CI(0.569, 0.932), P=0.012], opioid use [OR=21.500, 95%CI(1.334, 346.508), P=0.031], blood loss [OR=0.932, 95%CI(0.875, 0.993), P=0.029], C-reactive protein [OR=0.657, 95%CI(0.485, 0.890), P=0.007], preoperative anxiety [OR=23.143, 95%CI(1.859, 288.090), P=0.015], and sodium [OR=1.228, 95%CI(1.032, 1.461), P=0.020] were independent risk factors for the development of delirium after spinal surgery in elderly patients. CONCLUSION: Age, opioid use, blood loss, preoperative anxiety, elevated c-reactive protein, and hyponatremia are independent risk factors for the development of postoperative delirium in elderly patients undergoing spinal surgery.


Assuntos
Delírio , Complicações Pós-Operatórias , Humanos , Masculino , Feminino , Idoso , Fatores de Risco , Delírio/etiologia , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos , Coluna Vertebral/cirurgia , Idoso de 80 Anos ou mais , Modelos Logísticos
2.
J Hazard Mater ; 472: 134476, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691996

RESUMO

1,2-Dichloroethane (1,2-DCA), a widely utilized chemical intermediate and organic solvent in industry, frequently enters the environment due to accidental leaks and mishandling during application processes. Thus, the in-situ remediation of contaminated sites has become increasingly urgent. However, traditional remediation methods are inefficient and costly, while bioremediation presents a green, efficient, and non-secondary polluting alternative. In this study, an engineered strain capable of completely degrading 1,2-DCA was constructed. We introduced six exogenous genes of the 1,2-DCA degradation pathway into E. coli and confirmed their normal transcription and efficient expression in this engineered strain through qRT-PCR and proteomics. The degradation experiments showed that the strain completely degraded 2 mM 1,2-DCA within 12 h. Furthermore, the results of isotope tracing verified that the final degradation product, malic acid, entered the tricarboxylic acid cycle (TCA) of E. coli and was ultimately fully metabolized. Also, morphological changes in the engineered strain and control strain exposed to 1,2-DCA were observed under SEM, and the results revealed that the engineered strain is more tolerant to 1,2-DCA than the control strain. In conclusion, this study paved a new way for humanity to deal with the increasingly complex environmental challenges.


Assuntos
Biodegradação Ambiental , Escherichia coli , Dicloretos de Etileno , Engenharia Metabólica , Dicloretos de Etileno/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética
3.
NPJ Biofilms Microbiomes ; 10(1): 25, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509085

RESUMO

Hyperuricemia (HUA) is a metabolic syndrome caused by abnormal purine metabolism. Although recent studies have noted a relationship between the gut microbiota and gout, whether the microbiota could ameliorate HUA-associated systemic purine metabolism remains unclear. In this study, we constructed a novel model of HUA in geese and investigated the mechanism by which Lactobacillus rhamnosus GG (LGG) could have beneficial effects on HUA. The administration of antibiotics and fecal microbiota transplantation (FMT) experiments were used in this HUA goose model. The effects of LGG and its metabolites on HUA were evaluated in vivo and in vitro. Heterogeneous expression and gene knockout of LGG revealed the mechanism of LGG. Multi-omics analysis revealed that the Lactobacillus genus is associated with changes in purine metabolism in HUA. This study showed that LGG and its metabolites could alleviate HUA through the gut-liver-kidney axis. Whole-genome analysis, heterogeneous expression, and gene knockout of LGG enzymes ABC-type multidrug transport system (ABCT), inosine-uridine nucleoside N-ribohydrolase (iunH), and xanthine permease (pbuX) demonstrated the function of nucleoside degradation in LGG. Multi-omics and a correlation analysis in HUA patients and this goose model revealed that a serum proline deficiency, as well as changes in Collinsella and Lactobacillus, may be associated with the occurrence of HUA. Our findings demonstrated the potential of a goose model of diet-induced HUA, and LGG and proline could be promising therapies for HUA.


Assuntos
Hiperuricemia , Lacticaseibacillus rhamnosus , Humanos , Hiperuricemia/terapia , Nucleosídeos , Lactobacillus , Prolina , Purinas
4.
Adv Sci (Weinh) ; 10(30): e2303785, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37715295

RESUMO

Pervasive environmental contamination due to the uncontrolled dispersal of 2,4-dinitrotoluene (2,4-DNT) represents a substantial global health risk, demanding urgent intervention for the removal of this detrimental compound from affected sites and the promotion of ecological restoration. Conventional methodologies, however, are energy-intensive, susceptible to secondary pollution, and may inadvertently increase carbon emissions. In this study, a 2,4-DNT degradation module is designed, assembled, and validated in rice plants. Consequently, the modified rice plants acquire the ability to counteract the phytotoxicity of 2,4-DNT. The most significant finding of this study is that these modified rice plants can completely degrade 2,4-DNT into innocuous substances and subsequently introduce them into the tricarboxylic acid cycle. Further, research reveals that the modified rice plants enable the rapid phytoremediation of 2,4-DNT-contaminated soil. This innovative, eco-friendly phytoremediation approach for dinitrotoluene-contaminated soil and water demonstrates significant potential across diverse regions, substantially contributing to carbon neutrality and sustainable development objectives by repurposing carbon and energy from organic contaminants.


Assuntos
Carbono , Dinitrobenzenos , Dinitrobenzenos/análise , Dinitrobenzenos/metabolismo , Biodegradação Ambiental , Solo
5.
Ecotoxicol Environ Saf ; 262: 115287, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567105

RESUMO

2,4-Dinitrotoluene (2,4-DNT) as a common industrial waste has been massively discharged into the environment with industrial wastewater. Due to its refractory degradation, high toxicity, and bioaccumulation, 2,4-DNT pollution has become increasingly serious. Compared with the currently available physical and chemical methods, in situ bioremediation is considered as an economical and environmentally friendly approach to remove toxic compounds from contaminated environment. In this study, we relocated a complete degradation pathway of 2,4-DNT into Escherichia coli to degrade 2,4-DNT completely. Eight genes from Burkholderia sp. strain were re-synthesized by PCR-based two-step DNA synthesis method and introduced into E. coli. Degradation experiments revealed that the transformant was able to degrade 2,4-DNT completely in 12 h when the 2,4-DNT concentration reached 3 mM. The organic acids in the tricarboxylic acid cycle were detected to prove the degradation of 2,4-DNT through the artificial degradation pathway. The results proved that 2,4-DNT could be completely degraded by the engineered bacteria. In this study, the complete degradation pathway of 2,4-DNT was constructed in E. coli for the first time using synthetic biology techniques. This research provides theoretical and experimental bases for the actual treatment of 2,4-DNT, and lays a technical foundation for the bioremediation of organic pollutants.

6.
Biomed Environ Sci ; 36(4): 343-352, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37105909

RESUMO

Objective: A core genome multilocus sequence typing (cgMLST) scheme to genotype and identify potential risk clonal groups (CGs) in Proteus mirabilis. Methods: In this work, we propose a publicly available cgMLST scheme for P. mirabilis using chewBBACA. In total 72 complete P. mirabilis genomes, representing the diversity of this species, were used to set up a cgMLST scheme targeting 1,842 genes, 635 unfinished (contig, chromosome, and scaffold) genomes were used for its validation. Results: We identified a total of 205 CGs from 695 P. mirabilis strains with regional distribution characteristics. Of these, 159 unique CGs were distributed in 16 countries. CG20 and CG3 carried large numbers of shared and unique antibiotic resistance genes. Nine virulence genes ( papC, papD, papE, papF, papG, papH, papI, papJ, and papK) related to the P fimbrial operon that cause severe urinary tract infections were only found in CG20. These CGs require attention due to potential risks. Conclusion: This research innovatively performs high-resolution molecular typing of P. mirabilis using whole-genome sequencing technology combined with a bioinformatics pipeline (chewBBACA). We found that the CGs of P. mirabilis showed regional distribution differences. We expect that our research will contribute to the establishment of cgMLST for P. mirabilis.


Assuntos
Genoma Bacteriano , Proteus mirabilis , Proteus mirabilis/genética , Tipagem de Sequências Multilocus , Epidemiologia Molecular , Genótipo
7.
J Hazard Mater ; 451: 131099, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36868133

RESUMO

After nearly 80 years of extensive application, the oldest organic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has caused many problems of environmental pollution and ecological deterioration. Bioremediation is an ideal method for pollutant treatment. However, difficult screening and preparation of efficient degradation bacteria have largely hindered its application in 2,4-D remediation. We have created a novel engineering Escherichia coli with a reconstructed complete degradation pathway of 2,4-D to solve the problem of screening highly efficient degradation bacteria in this study. The results of fluorescence quantitative PCR demonstrated that all nine genes in the degradation pathway were successfully expressed in the engineered strain. The engineered strains can quickly and completely degrade 0.5 mM 2, 4-D within 6 h. Inspiring, the engineered strains grew with 2,4-D as the sole carbon source. By using the isotope tracing method, the metabolites of 2,4-D were found incorporated into the tricarboxylic acid cycle in the engineering strain. Scanning electron microscopy showed that 2,4-D had less damage on the engineered bacteria than the wild-type strain. Engineered strain can also rapidly and completely remedy 2,4-D pollution in natural water and soil. Assembling the metabolic pathways of pollutants through synthetic biology was an effective method to create pollutant-degrading bacteria for bioremediation.


Assuntos
Poluentes Ambientais , Herbicidas , Herbicidas/metabolismo , Biodegradação Ambiental , Ácido 2,4-Diclorofenoxiacético/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fenoxiacetatos , Bactérias/metabolismo
8.
Plant Biotechnol J ; 21(3): 560-573, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36448454

RESUMO

Currently, feed enzymes are primarily obtained through fermentation of fungi, bacteria, and other microorganisms. Although the manufacturing technology for feed enzymes has evolved rapidly, the activities of these enzymes decline during the granulating process and the cost of application has increased over time. An alternative approach is the use of genetically modified plants containing complex feed enzymes for direct utilization in animal feedstuff. We co-expressed three commonly used feed enzymes (phytase, ß-glucanase, and xylanase) in barley seeds using the Agrobacterium-mediated transformation method and generated a new barley germplasm. The results showed that these enzymes were stable and had no effect on the development of the seeds. Supplementation of the basal diet of laying hens with only 8% of enzyme-containing seeds decreased the quantities of indigestible carbohydrates, improved the availability of phosphorus, and reduced the impact of animal production on the environment to an extent similar to directly adding exogenous enzymes to the feed. Feeding enzyme-containing seeds to layers significantly increased the strength of the eggshell and the weight of the eggs by 10.0%-11.3% and 5.6%-7.7% respectively. The intestinal microbiota obtained from layers fed with enzyme-containing seeds was altered compared to controls and was dominated by Alispes and Rikenella. Therefore, the transgenic barley seeds produced in this study can be used as an ideal feedstuff for use in animal feed.


Assuntos
6-Fitase , Hordeum , Animais , Feminino , Galinhas , Dieta , Sementes , Engenharia Genética , Ração Animal/análise , Suplementos Nutricionais , Fenômenos Fisiológicos da Nutrição Animal
9.
J Biol Eng ; 16(1): 33, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457138

RESUMO

The frequency of outbreaks of newly emerging infectious diseases has increased in recent years. The coronavirus disease 2019 (COVID-19) outbreak in late 2019 has caused a global pandemic, seriously endangering human health and social stability. Rapid detection of infectious disease pathogens is a key prerequisite for the early screening of cases and the reduction in transmission risk. Fluorescence quantitative polymerase chain reaction (qPCR) is currently the most commonly used pathogen detection method, but this method has high requirements in terms of operating staff, instrumentation, venues, and so forth. As a result, its application in the settings such as poorly conditioned communities and grassroots has been limited, and the detection needs of the first-line field cannot be met. The development of point-of-care testing (POCT) technology is of great practical significance for preventing and controlling infectious diseases. Isothermal amplification technology has advantages such as mild reaction conditions and low instrument dependence. It has a promising prospect in the development of POCT, combined with the advantages of high integration and portability of microfluidic chip technology. This study summarized the principles of several representative isothermal amplification techniques, as well as their advantages and disadvantages. Particularly, it reviewed the research progress on microfluidic chip-based recombinase polymerase isothermal amplification technology and highlighted future prospects.

10.
Sheng Li Xue Bao ; 74(5): 827-836, 2022 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-36319105

RESUMO

Butyrate, normally produced by probiotics in the gut, not only provides energy for cells, but also changes the phosphorylation, acetylation and methylation levels of many proteins in cells. As a result, it affects the expression of many genes and the transmission of cell signals. Through G protein-coupled receptors, butyrate promotes the secretion of intestinal mucus and the formation of epithelial barriers, and attenuates the impacts of the pathogenic bacteria and their metabolites on human body. The Toll-like receptors (TLRs) are a group of pattern recognition receptors, and their activation causes the translocation of nuclear factor κB (NF-κB) from the cytoplasm to the nucleus and eventually leads to expression and secretion of various pro-inflammatory factors and chemokines. The expression of TLRs is also involved in the pathogenesis of some inflammatory diseases and tumors. The purpose of this review is to summarize the effects of butyrate on TLRs and their downstream signaling pathways. We not only summarized the production of butyrate, the expression of TLRs and the influence of their interaction on the body under the conditions of inflammation and tumor, but also discussed the potential role of butyrate as a bacterial metabolite in the treatments of some human diseases.


Assuntos
Butiratos , Receptores Toll-Like , Humanos , Acetilação , Fosforilação , Inflamação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA