Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 308, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528464

RESUMO

BACKGROUND: Flowering at the right time is a very important factor affecting the stable annual yield of longan. However, a lack of knowledge of the regulatory mechanism and key genes of longan flowering restricts healthy development of the longan industry. Therefore, identifying relevant genes and analysing their regulatory mechanism are essential for scientific research and longan industry development. RESULTS: DlLFY (Dimocarpus longan LEAFY) contains a 1167 bp open reading frame and encodes 388 amino acids. The amino acid sequence has a typical LFY/FLO family domain. DlLFY was expressed in all tissues tested, except for the leaf, pericarp, and pulp, with the highest expression occurring in flower buds. Expression of DlLFY was significantly upregulated at the early flower induction stage in "SX" ("Shixia"). The results of subcellular localization and transactivation analysis showed that DlLFY is a typical transcription factor acting as a transcriptional activator. Moreover, overexpression of DlLFY in Arabidopsis promoted early flowering and restrained growth, resulting in reduced plant height and rosette leaf number and area in transgenic plants. DNA affinity purification sequencing (DAP-Seq) analysis showed that 13 flower-related genes corresponding to five homologous genes of Arabidopsis may have binding sites and be putative target genes. Among these five flower-related genes, only AtTFL1 (terminal flower 1) was strongly inhibited in transgenic lines. CONCLUSION: Taken together, these results indicate that DlLFY plays a pivotal role in controlling longan flowering, possibly by interacting with TFL1.


Assuntos
Arabidopsis , Sapindaceae , Arabidopsis/genética , Arabidopsis/metabolismo , Flores , Folhas de Planta/metabolismo , Sapindaceae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Nat Commun ; 15(1): 624, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245507

RESUMO

In situ monitoring of endogenous amino acid loss through sweat can provide physiological insights into health and metabolism. However, existing amino acid biosensors are unable to quantitatively assess metabolic status during exercise and are rarely used to establish blood-sweat correlations because they only detect a single concentration indicator and disregard sweat rate. Here, we present a wearable multimodal biochip integrated with advanced electrochemical electrodes and multipurpose microfluidic channels that enables simultaneous quantification of multiple sweat indicators, including phenylalanine and chloride, as well as sweat rate. This combined measurement approach reveals a negative correlation between sweat phenylalanine levels and sweat rates among individuals, which further enables identification of individuals at high metabolic risk. By tracking phenylalanine fluctuations induced by protein intake during exercise and normalizing the concentration indicator by sweat rates to reduce interindividual variability, we demonstrate a reliable method to correlate and analyze sweat-blood phenylalanine levels for personal health monitoring.


Assuntos
Técnicas Biossensoriais , Suor , Humanos , Suor/química , Fenilalanina/metabolismo , Sudorese , Técnicas Biossensoriais/métodos , Aminoácidos/metabolismo
3.
Genes (Basel) ; 14(12)2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38136958

RESUMO

Actinidia chinensis 'Hongyang', also known as red yangtao (red heart kiwifruit), is a vine fruit tree native to China possessing significant nutritional and economic value. However, information on its genetic diversity and phylogeny is still very limited. The first chloroplast (cp) genome of A. chinensis 'Hongyang' cultivated in China was sequenced using de novo technology in this study. A. chinensis 'Hongyang' possesses a cp genome that spans 156,267 base pairs (bp), exhibiting an overall GC content of 37.20%. There were 132 genes that were annotated, with 85 of them being protein-coding genes, 39 transfer RNA (tRNA) genes, and 8 ribosomal RNA (rRNA) genes. A total of 49 microsatellite sequences (SSRs) were detected, mainly single nucleotide repeats, mostly consisting of A or T base repeats. Compared with 14 other species, the cp genomes of A. chinensis 'Hongyang' were biased towards the use of codons containing A/U, and the non-protein coding regions in the A. chinensis 'Hongyang' cpDNA showed greater variation than the coding regions. The nucleotide polymorphism analysis (Pi) yielded nine highly variable region hotspots, most in the large single copy (LSC) region. The cp genome boundary analysis revealed a conservative order of gene arrangement in the inverted repeats (IRs) region of the cp genomes of 15 Actinidia plants, with small expansions and contractions of the boundaries. Furthermore, phylogenetic tree indicated that A. chinensis 'Hongyang' was the closest relative to A. indochinensis. This research provides a useful basis for future genetic and evolutionary studies of A. chinensis 'Hongyang', and enriches the biological information of Actinidia species.


Assuntos
Actinidia , Genoma de Cloroplastos , Filogenia , Actinidia/genética , Evolução Biológica , Nucleotídeos
4.
Food Res Int ; 173(Pt 1): 113276, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803588

RESUMO

Bagging is an effective cultivation strategy to produce attractive and pollution-free kiwifruit. However, the effect and metabolic regulatory mechanism of bagging treatment on kiwifruit quality remain unclear. In this study, transcriptome and metabolome analyses were conducted to determine the regulatory network of the differential metabolites and genes after bagging. Using outer and inner yellow single-layer fruit bags, we found that bagging treatment improved the appearance of kiwifruit, increased the soluble solid content (SSC) and carotenoid and anthocyanin levels, and decreased the chlorophyll levels. We also identified 41 differentially expressed metabolites and 897 differentially expressed genes (DEGs) between the bagged and control 'Hongyang' fruit. Transcriptome and metabolome analyses revealed that the increase in SSC after bagging treatment was mainly due to the increase in D-glucosamine metabolite levels and eight DEGs involved in amino sugar and nucleotide sugar metabolic pathways. A decrease in glutamyl-tRNA reductase may be the main reason for the decrease in chlorophyll. Downregulation of lycopene epsilon cyclase and 9-cis-epoxycarotenoid dioxygenase increased carotenoid levels. Additionally, an increase in the levels of the taxifolin-3'-O-glucoside metabolite, flavonoid 3'-monooxygenase, and some transcription factors led to the increase in anthocyanin levels. This study provides novel insights into the effects of bagging on the appearance and internal quality of kiwifruit and enriches our theoretical knowledge on the regulation of color pigment synthesis in kiwifruit.


Assuntos
Actinidia , Transcriptoma , Frutas/genética , Frutas/metabolismo , Antocianinas/metabolismo , Metaboloma , Actinidia/genética , Actinidia/metabolismo , Carotenoides/metabolismo , Clorofila
5.
BMC Genomics ; 24(1): 490, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633894

RESUMO

BACKGROUND: As the characteristic functional component in ginger, gingerols possess several health-promoting properties. Long non-coding RNAs (lncRNAs) act as crucial regulators of diverse biological processes. However, lncRNAs in ginger are not yet identified so far, and their potential roles in gingerol biosynthesis are still unknown. In this study, metabolomic and transcriptomic analyses were performed in three main ginger cultivars (leshanhuangjiang, tonglingbaijiang, and yujiang 1 hao) in China to understand the potential roles of the specific lncRNAs in gingerol accumulation. RESULTS: A total of 744 metabolites were monitored by metabolomics analysis, which were divided into eleven categories. Among them, the largest group phenolic acid category contained 143 metabolites, including 21 gingerol derivatives. Of which, three gingerol analogs, [8]-shogaol, [10]-gingerol, and [12]-shogaol, accumulated significantly. Moreover, 16,346 lncRNAs, including 2,513, 1,225, and 2,884 differentially expressed (DE) lncRNA genes (DELs), were identified in all three comparisons by transcriptomic analysis. Gene ontology enrichment (GO) analysis showed that the DELs mainly enriched in the secondary metabolite biosynthetic process, response to plant hormones, and phenol-containing compound metabolic process. Correlation analysis revealed that the expression levels of 11 DE gingerol biosynthesis enzyme genes (GBEGs) and 190 transcription factor genes (TF genes), such as MYB1, ERF100, WRKY40, etc. were strongly correlation coefficient with the contents of the three gingerol analogs. Furthermore, 7 and 111 upstream cis-acting lncRNAs, 1,200 and 2,225 upstream trans-acting lncRNAs corresponding to the GBEGs and TF genes were identified, respectively. Interestingly, 1,184 DELs might function as common upstream regulators to these GBEGs and TFs genes, such as LNC_008452, LNC_006109, LNC_004340, etc. Furthermore, protein-protein interaction networks (PPI) analysis indicated that three TF proteins, MYB4, MYB43, and WRKY70 might interact with four GBEG proteins (PAL1, PAL2, PAL3, and 4CL-4). CONCLUSION: Based on these findings, we for the first time worldwide proposed a putative regulatory cascade of lncRNAs, TFs genes, and GBEGs involved in controlling of gingerol biosynthesis. These results not only provide novel insights into the lncRNAs involved in gingerol metabolism, but also lay a foundation for future in-depth studies of the related molecular mechanism.


Assuntos
RNA Longo não Codificante , Zingiber officinale , RNA Longo não Codificante/genética , Transcriptoma , Metabolômica , Zingiber officinale/genética
6.
Adv Mater ; 35(51): e2304596, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37572093

RESUMO

In recent decades, the rapid growth in flexible materials, new manufacturing technologies, and wearable electronics design techniques has helped establish the foundations for noninvasive photoelectric sensing systems with shape-adaptability and "skin-like" properties. Physiological sensing includes humidity, mechanical, thermal, photoelectric, and other aspects. Photoplethysmography (PPG), an important noninvasive method for measuring pulse rate, blood pressure, and blood oxygen, uses the attenuated signal obtained by the light absorbed and reflected from living tissue to a light source to realize real-time monitoring of human health status. This work illustrates a patch-type optoelectronic system that integrates a flexible perovskite photodetector and all-inorganic light-emitting diodes (LEDs) to realize the real-time monitoring of human PPG signals. The pulse rate of the human body and the swelling degree of finger joints can be extracted and analyzed using photodetectors, thus monitoring human health for the prevention and early diagnosis of certain diseases. Specifically, this work develops a 3D wrinkled-serpentine interconnection wire that increases the shape adaptability of the device in practical applications. The PPG signal sensor reported in this study has considerable potential for future wearable intelligent medical applications.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Monitorização Fisiológica , Pressão Sanguínea , Eletrônica , Pele
7.
Small ; 19(42): e2303114, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37340580

RESUMO

High-quality photodetectors are always the main way to obtain external information, especially near-infrared sensors play an important role in remote sensing communication. However, due to the limitation of Silicon (Si) wide bandgap and the incompatibility of most near infrared photoelectric materials with traditional integrated circuits, the development of high performance and wide detection spectrum near infrared detectors suitable for miniaturization and integration is still facing many obstacles. Herein, the monolithic integration of large area tellurium optoelectronic functional units is realized by magnetron sputtering technology. Taking advantage of the type II heterojunction constructed by tellurium (Te) and silicon (Si), the photogenerated carriers are effectively separated, which prolongs the carrier lifetime and improves the photoresponse by several orders of magnitude. The tellurium/silicon (Te/Si) heterojunction photodetector demonstrates excellent detectivity and ultra-fast turn-on time. Importantly, an imaging array (20 × 20 pixels) based on the Te/Si heterojunction is demonstrated and high-contrast photoelectric imaging is realized. Because of the high contrast obtained by the Te/Si array, in comparison with the Si arrays, it significantly improve the efficiency and accuracy of the subsequent processing tasks when the electronic pictures are applied to artificial neural network (ANN) to simulate the artificial vision system.

8.
J Agric Food Chem ; 71(27): 10304-10313, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37381782

RESUMO

Gray mold caused by Botrytis cinerea leads to huge economic losses to the kiwifruit (Actinidia chinensis) industry. Elucidating the molecular mechanism responding to B. cinerea is the theoretical basis for the resistance to molecular breeding of kiwifruit. Previous studies have shown that miR160 regulates plant disease resistance through the indole-3-acetic acid (IAA) signaling pathway. In this study, kiwifruit "Hongyang" was used as the material, and Ac-miR160d and its target genes were identified and cloned. Overexpression and virus-induced gene silencing (VIGS) technology combined with RNA-seq were adopted to analyze the regulatory role of Ac-miR160d in kiwifruit resistance to B. cinerea. Silencing Ac-miR160d (AcMIR160d-KN) increased kiwifruit sensitivity to B. cinerea, whereas overexpression of Ac-miR160d (AcMIR160d-OE) increased kiwifruit resistance to B. cinerea, suggesting that Ac-miR160d positively regulates kiwifruit resistance to B. cinerea. In addition, overexpression of Ac-miR160d in kiwifruit increased antioxidant enzyme activities, such as catalase (CAT) and superoxide dismutase (SOD), and endogenous phytohormone IAA and salicylic acid (SA) content, in response to B. cinerea-induced stress. RNA-seq identified 480 and 858 unique differentially expressed genes in the AcMIR160d-KN vs CK and AcMIR160d-OE vs CK groups, respectively, with fold change ≥2 and false discovery rate <0.01. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that families associated with "biosynthesis of secondary metabolites" are possibly regulated by Ac-miR160d. "Phenylpropanoid biosynthesis", "flavonoid biosynthesis", and "terpenoid backbone biosynthesis" were further activated in the two comparison groups upon B. cinerea infection. Our results may reveal the molecular mechanism by which miR160d regulates kiwifruit resistance to B. cinerea and may provide gene resources for molecular breeding in kiwifruit resistance.


Assuntos
Actinidia , Actinidia/genética , Actinidia/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Botrytis/fisiologia , Transdução de Sinais , Doenças das Plantas/genética , Resistência à Doença/genética
9.
Bot Stud ; 64(1): 12, 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37237171

RESUMO

BACKGROUND: Under natural conditions, ginger (Zingiber officinale Rosc.) rarely blossom and has seed, which limits new variety breeding of ginger and industry development. In this study, the effects of different photoperiods and light quality on flowering induction in ginger were performed, followed by gene expression analysis of flower buds differentiation under induced treatment using RNA-seq technology. RESULTS: First, both red light and long light condition (18 h light/6 h dark) could effectively induce differentiation of flower buds in ginger. Second, a total of 3395 differentially expressed genes were identified from several different comparisons, among which nine genes, including CDF1, COP1, GHD7, RAV2-like, CO, FT, SOC1, AP1 and LFY, were identified to be associated with flowering in induced flower buds and natural leaf buds. Aside from four down-regulated genes (CDF1, COP1, GHD7 and RAV2-like), other five genes were all up-regulated expression. These differentially expressed genes were mainly classified into 2604 GO categories, which were further enriched into 120 KEGG metabolic pathways. Third, expression change of flowering-related genes in ginger indicated that the induction may negatively regulated expression of CDF1, COP1, GHD7 and RAV2-like, and subsequently positively regulated expression of CO, FT, SOC1, LFY and AP1, which finally led to ginger flowering. In addition, the RNA-seq results were verified by qRT-PCR analysis of 18 randomly selected genes, which further demonstrated the reliability of transcriptome analysis. CONCLUSION: This study revealed the ginger flowering mechanism induced by light treatment and provided abundant gene information, which contribute to the development of hybrid breeding of ginger.

10.
Small ; 19(30): e2300831, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37035967

RESUMO

Stereopsis is of great important functions for humans to perceive and interact with the world. To realize the function of stereoscopic imaging, optoelectronic sensors shall possess good photoresponsive performance, multidirectional sensing, and 3D building capabilities. However, the current imaging sensors are mainly focused on 2D imaging, limiting their practical application scenarios. In this study, a stereopsis-inspired flexible 3D visual imaging system (VIS) based on 2D Ruddlesden-Popper perovskite is demonstrated. The 3D-VIS consists of 800 device units, each of which demonstrates excellent photoresponse performance, mechanical characteristics, and environmental stability. In addition to the capability of detecting 2D reflective images, the 3D-VIS realizes the function of detecting the depth of field and fusing object projections of two directions to invert the 3D image by utilizing voxels to rebuild the spatial structure of the object. In the future, the 3D-VIS will have broad application prospects in medical imaging, virtual reality, industrial automation, and other fields.

11.
Molecules ; 28(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36677876

RESUMO

In this study, sweet-potato-vine-based porous carbon (SPVPC) was prepared using zinc chloride as an activating and pore-forming agent. The optimised SPVPC exhibited abundant porous structures with a high specific surface area of 1397.8 m2 g-1. Moreover, SPVPC exhibited excellent adsorption characteristics for removing methylene blue (MB) from aqueous solutions. The maximum adsorption capacity for MB reached 653.6 mg g-1, and the reusability was satisfactory. The adsorption kinetics and isotherm were in good agreement with the pseudo-second-order kinetics and Langmuir models, respectively. The adsorption mechanism was summarised as the synergistic effects of the hierarchically porous structures in SPVPC and various interactions between SPVPC and MB. Considering its low cost and excellent adsorption performance, the prepared porous carbon is a promising adsorbent candidate for dye wastewater treatment.


Assuntos
Ipomoea batatas , Solanum tuberosum , Poluentes Químicos da Água , Carbono/química , Azul de Metileno/química , Adsorção , Porosidade , Cinética
12.
Nat Commun ; 13(1): 5975, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216925

RESUMO

Anisotropy control of the electronic structure in inorganic semiconductors is an important step in developing devices endowed with multi-function. Here, we demonstrate that the intrinsic anisotropy of tellurium nanowires can be used to modulate the electronic structure and piezoelectric polarization and decouple pressure and temperature difference signals, and realize VR interaction and neuro-reflex applications. The architecture design of the device combined with self-locking effect can eliminate dependence on displacement, enabling a single device to determine the hardness and thermal conductivity of materials through a simple touch. We used a bimodal Te-based sensor to develop a wearable glove for endowing real objects to the virtual world, which greatly improves VR somatosensory feedback. In addition, we successfully achieved stimulus recognition and neural-reflex in a rabbit sciatic nerve model by integrating the sensor signals using a deep learning technique. In view of in-/ex-vivo feasibility, the bimodal Te-based sensor would be considered a novel sensing platform for a wide range application of metaverse, AI robot, and electronic medicine.


Assuntos
Realidade Virtual , Dispositivos Eletrônicos Vestíveis , Animais , Anisotropia , Coelhos , Reflexo , Telúrio
13.
Front Plant Sci ; 13: 992041, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36161002

RESUMO

The balance of carbon (C) and nitrogen (N) metabolism influences plant growth and development as well as yield. A two-year field experiment was conducted in a hilly region in southwest China in 2019-2020 to investigate the correlation between the accumulation and balance of C and N, as well as the grain yield of maize cultivars with contrasting N efficiencies. Using Zhenghong 311 (ZH 311) and Xianyu 508 (XY 508) as research sources, the differences in C and N accumulation and balance in maize cultivars with contrasting N efficiencies were compared to analyze the correlation between the accumulation and balance of C and N with grain yield. According to the results, the ZH 311 cultivar had higher C and N accumulation in each stage and grain yield than the XY 508 cultivar, while the C/N ratio in each stage and organ was significantly lower in ZH 311 than in XY 508, with the greatest difference occurring in the silking stage and leaf, indicating that the N-efficient cultivar ZH 311 had evident advantages in accumulation and balance of C and N and grain yield than the N-inefficient cultivar XY 508. Moreover, the C and N accumulation and grain yield increased significantly with N application, while the C/N ratio in each stage and organ decreased significantly with N application, but the differences between ZH 311 and XY 508 increased first and then decreased with the increase of N level, the optimum N level when obtaining the highest grain yield of ZH 311 (273.21 kg ha-1) was significantly lower than that of XY 508 (355.88 kg ha-1). Furthermore, grain yield was positively correlated with C (R 2 = 0.9251) and N (R 2 = 0.9033) accumulation, affected by pre-anthesis N (R 2 = 0.9198) and post-anthesis C (R 2 = 0.8632) accumulation, and negatively correlated with the C/N ratio (R 2 = 0.7664), with the highest correlation between grain yield and the C/N ratio in silking stage (R 2 = 0.7984) and leaf (R 2 = 0.7616). In conclusion, the N-efficient cultivar ZH 311 could better coordinate the C and N balance of the plant, especially the C and N balance in the silking stage and leaf, promote photosynthetic product storage and transport, prolong the leaf function period, and make the pre-anthesis and post-anthesis C and N accumulation of ZH 311 significantly higher than those of XY 508, allowing higher grain yields.

14.
Bioresour Technol ; 349: 126883, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35192946

RESUMO

Here, a low-cost acid-base and temperature tolerant algal bloom derived activated carbon (ABAC) was successfully prepared to remove rhodamine B (RhB) from water. The ABAC exhibited maximum adsorption capacity of RhB (1101 ± 11 mg/g), higher than that of laboratory-prepared rape straw activated carbon (176 ± 5 mg/g) and commercial activated carbon (489 ± 5 mg/g). It is attributed to larger surface area and mesoporous structure of the ABAC. Furthermore, the effective adsorption of RhB by using ABAC was achieved at a wide range of solution pH (3.2-10.8) and temperature(25-50 °C). The mass transfer resistance of RhB adsorption process well depicted by Langmuir model was controlled by external mass transfer. The adsorption process involved both secondly chemisorption (H-bonds and π-π interaction) and dominated physisorption. Four dyes in river water were efficiently removed. This work provides a promising approach for developing high-absorption biomass materials for actual dye wastewater treatment.


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Adsorção , Carvão Vegetal/química , Corantes , Eutrofização , Concentração de Íons de Hidrogênio , Cinética , Temperatura , Águas Residuárias , Poluentes Químicos da Água/química
15.
Nat Commun ; 12(1): 6476, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753933

RESUMO

Polarized light can provide significant information about objects, and can be used as information carrier in communication systems through artificial modulation. However, traditional polarized light detection systems integrate polarizers and various functional circuits in addition to detectors, and are supplemented by complex encoding and decoding algorithms. Although the in-plane anisotropy of low-dimensional materials can be utilized to manufacture polarization-sensitive photodetectors without polarizers, the low anisotropic photocurrent ratio makes it impossible to realize digital output of polarized information. In this study, we propose an integrated polarization-sensitive amplification system by introducing a nanowire polarized photodetector and organic semiconductor transistors, which can boost the polarization sensitivity from 1.24 to 375. Especially, integrated systems are universal in that the systems can increase the anisotropic photocurrent ratio of any low-dimensional material corresponding to the polarized light. Consequently, a simple digital polarized light communication system can be realized based on this integrated system, which achieves certain information disguising and confidentiality effects.

16.
Funct Plant Biol ; 48(12): 1254-1263, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34600600

RESUMO

Kiwifruit (Actinidia chinensis) is rich in nutritional and medicinal value. However, the organism responsible for grey mould, Botrytis cinerea, causes great economic losses and food safety problems to the kiwifruit industry. Understanding the molecular mechanism underlying postharvest kiwifruit responses to B. cinerea is important for preventing grey mould decay and enhancing resistance breeding. Kiwifruit cv. 'Hongyang' was used as experimental material. The AcPGIP gene was cloned and virus-induced gene silencing (VIGS) was used to explore the function of the polygalacturonase inhibiting protein (PGIP) gene in kiwifruit resistance to B. cinerea. Virus-induced silencing of AcPGIP resulted in enhanced susceptibility of kiwifruit to B. cinerea. Antioxidant enzymes, secondary metabolites and endogenous hormones were analysed to investigate kiwifruit responses to B. cinerea infection. Kiwifruit effectively activated antioxidant enzymes and secondary metabolite production in response to B. cinerea, which significantly increased Indole-3-acetic acid (IAA), gibberellin 3 (GA3) and abscisic acid (ABA) content relative to those in uninfected fruit. Silencing of AcPGIP enabled kiwifruit to quickly activate hormone-signaling pathways through an alternative mechanism to trigger defence responses against B. cinerea infection. These results expand our understanding of the regulatory mechanism for disease resistance in kiwifruit; further, they provide gene-resource reserves for molecular breeding of kiwifruit for disease resistance.


Assuntos
Actinidia , Ácido Abscísico , Botrytis , Frutas
18.
Hortic Res ; 8(1): 189, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354044

RESUMO

Ginger (Zingiber officinale), the type species of Zingiberaceae, is one of the most widespread medicinal plants and spices. Here, we report a high-quality, chromosome-scale reference genome of ginger 'Zhugen', a traditionally cultivated ginger in Southwest China used as a fresh vegetable, assembled from PacBio long reads, Illumina short reads, and high-throughput chromosome conformation capture (Hi-C) reads. The ginger genome was phased into two haplotypes, haplotype 1 (1.53 Gb with a contig N50 of 4.68 M) and haplotype 0 (1.51 Gb with a contig N50 of 5.28 M). Homologous ginger chromosomes maintained excellent gene pair collinearity. In 17,226 pairs of allelic genes, 11.9% exhibited differential expression between alleles. Based on the results of ginger genome sequencing, transcriptome analysis, and metabolomic analysis, we proposed a backbone biosynthetic pathway of gingerol analogs, which consists of 12 enzymatic gene families, PAL, C4H, 4CL, CST, C3'H, C3OMT, CCOMT, CSE, PKS, AOR, DHN, and DHT. These analyses also identified the likely transcription factor networks that regulate the synthesis of gingerol analogs. Overall, this study serves as an excellent resource for further research on ginger biology and breeding, lays a foundation for a better understanding of ginger evolution, and presents an intact biosynthetic pathway for species-specific gingerol biosynthesis.

19.
PeerJ ; 9: e11755, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34414026

RESUMO

BACKGROUND: Cytochrome P450s play crucial roles in various biosynthetic reactions. Ginger (Zingiber officinale), which is often threatened by Ralstonia solanacearum, is the most economically important crop in the family Zingiberaceae. Whether the cytochrome P450 complement (CYPome) significantly responds to this pathogen has remained unclear. METHODS: Transcriptomic responses to R. solanacearum and soil moisture were analyzed in ginger, and expression profiles of the CYPome were determined based on transcriptome data. RESULTS: A total of 821 P450 unigenes with ORFs ≥ 300 bp were identified. Forty percent soil moisture suppressed several key P450 unigenes involved in the biosynthesis of flavonoids, gingerols, and jasmonates, including unigenes encoding flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase, steroid 22-alpha-hydroxylase, cytochrome P450 family 724 subfamily B polypeptide 1, and allene oxide synthase. Conversely, the expression of P450 unigenes involved in gibberellin biosynthesis and abscisic acid catabolism, encoding ent-kaurene oxidase and abscisic acid 8'-hydroxylase, respectively, were promoted by 40% soil moisture. Under R. solanacearum infection, the expression of P450 unigenes involved in the biosynthesis of the above secondary metabolites were changed, but divergent expression patterns were observed under different soil moisture treatments. High moisture repressed expression of genes involved in flavonoid, brassinosteroid, gingerol, and jasmonate biosynthesis, but promoted expression of genes involved in GA anabolism and ABA catabolism. These results suggest possible mechanisms for how high moisture causes elevated susceptibility to R. solanacearum infection.

20.
Biology (Basel) ; 10(7)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201796

RESUMO

The study of somatic embryogenesis can provide insight into early plant development. We previously obtained LaMIR166a-overexpressing embryonic cell lines of Larix kaempferi (Lamb.) Carr. To further elucidate the molecular mechanisms associated with miR166 in this species, the transcriptional profiles of wild-type (WT) and three LaMIR166a-overexpressing transgenic cell lines were subjected to RNA sequencing using the Illumina NovaSeq 6000 system. In total, 203,256 unigenes were generated using Trinity de novo assembly, and 2467 differentially expressed genes were obtained by comparing transgenic and WT lines. In addition, we analyzed the cleaved degree of LaMIR166a target genes LaHDZ31-34 in different transgenic cell lines by detecting the expression pattern of LaHdZ31-34, and their cleaved degree in transgenic cell lines was higher than that in WT. The downstream genes of LaHDZ31-34 were identified using Pearson correlation coefficients. Yeast one-hybrid and dual-luciferase report assays revealed that the transcription factors LaHDZ31-34 could bind to the promoters of LaPAP, LaPP1, LaZFP5, and LaPHO1. This is the first report of gene expression changes caused by LaMIR166a overexpression in Japanese larch. These findings lay a foundation for future studies on the regulatory mechanism of miR166.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA