Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 29(6): 1319-1322, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29679286

RESUMO

Fast eruption desorption ionization (FEDI) technique was developed for simple, rapid, and sensitive analysis of various compounds. The FEDI allows three analytical modes each with the unique characteristic. The results demonstrated that non-assisted eruption was suitable for stable and volatile compounds, energetic material (EM)-assisted for nonvolatile molecules especially metal compounds, and solvent-assisted eruption for fragile molecules. High-quality mass spectra with intact ions of analytes were obtained in positive and negative ion modes. Graphical Abstract ᅟ.

2.
Rapid Commun Mass Spectrom ; 30(24): 2655-2663, 2016 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-27723938

RESUMO

RATIONALE: In order to improve analysis of analytes in trace amounts in a complex matrix, we developed a novel post-processing method, named Chromatographic Peak Reconstruction (CPR), to process the recorded data from gas chromatography/time-of-flight mass spectrometry (GC/TOFMS). METHODS: For a trace ion, the relative deviation (δ) between the adjacent scanned mass-to-charge ratios (m/z) was found to be inversely proportional to its MS peak intensity. Based on this relationship, the thresholds of δ value within the specified intensity segments were estimated by the CPR and used to screen out the suspicious scan-points in the extracted ion chromatographic (EIC) peak. Then, the intensities of these suspicious scan-points were calibrated to reconstruct a new EIC peak. RESULTS: In the qualitative analysis of 118 pesticides, 107 out of the test pesticides can be confirmed. The corrected response ratios of the qualitative ion (q) over the quantitative ion (Q), q/Q, became closer to their references. In the quantitative analysis of 10 test pesticides at 5 ppb, the relative errors of the calculated concentrations after using the CPR were below ±1.55%, down from ±2.29% without using the CPR. CONCLUSIONS: The developed CPR showed great potential in the analysis of trace analytes in complex matrices. It was proved to be a helpful data processing method for the monitoring of trace pesticide residues. Copyright © 2016 John Wiley & Sons, Ltd.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA