Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(32): 14169-14179, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39081038

RESUMO

Laboratory animal studies have reported the biliary excretion of chemicals following exposure. Nevertheless, feces are rarely used as a matrix in biomonitoring of chemical exposures. In this study, feces and urine from pet dogs and cats were analyzed for the presence of 45 plasticizers, 45 environmental phenols, and 31 pesticides. Thirty-two analytes were detected in ≥70% pet feces, while up to 29 analytes were frequently (≥70%) found in urine. The sum concentrations of all analytes (∑All) in pet feces were significantly higher than those measured in urine (median: 393-666 ng/g wet weight in feces vs 216-464 ng/mL in urine). Plasticizers were the dominant class of chemicals, accounting for 81-97% and 69-77% of ∑All in urine and feces, respectively. Analyte concentrations measured in paired urine and feces exhibited weak correlations. The excretion rates of the chemicals via urine and feces were calculated through a reverse dosimetry approach. Low-molecular-weight phthalates excreted predominantly in urine, whereas high-molecular-weight phthalates and several organophosphate triesters were excreted predominantly in feces. The fecal excretion rates of parabens, benzophenones, bisphenols, naphthalene, 2,4-dichloronicotinic acid, and 4-nitrophenol were similar to or higher than those of urinary excretion. Our results suggest that feces are an important matrix in biomonitoring of exposure to environmental chemicals.


Assuntos
Monitoramento Biológico , Fezes , Animais , Gatos , Cães , Fezes/química , Monitoramento Ambiental , Poluentes Ambientais/urina , Animais de Estimação , Fenóis/urina , Exposição Ambiental
2.
Kidney Med ; 6(3): 100778, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38435069

RESUMO

Rationale & Objective: This study aimed to assess the effect of exposure to organic pollutants in adults with chronic kidney disease (CKD). Study Design: This was a cross-sectional and longitudinal analysis. Setting and Participants: Forty adults enrolled in the Chronic Renal Insufficiency Cohort (CRIC). Exposures: Exposure at baseline and longitudinally to various organic chemical pollutants. Outcomes: The outcomes were as follows: death; composite of congestive heart failure, myocardial infarction, and stroke; event-free survival from kidney failure or ≥50% decline in estimated glomerular filtration rate (eGFR); and longitudinal trajectory of eGFR. Analytical Approach: We used high-performance liquid chromatography with tandem mass spectrometry to measure urinary concentrations of bisphenols, phthalates, organophosphate pesticides, polycyclic aromatic hydrocarbons, melamine, and cyanuric acid at years 1, 3, and 5 after enrollment in the CRIC. Univariate and multivariable logistic regression were used to examine the association of individual compounds and classes of pollutants with the outcomes. The Cox proportional hazards model and Kaplan-Meier method were used to calculate hazard ratios and 95% CIs for each class of pollutants. Results: Median baseline eGFR and urinary protein-to-creatinine ratio were 33 mL/min/1.73 m2 and 0.58 mg/g, respectively. Of 52 compounds assayed, 30 were detectable in ≥50% of participants. Urinary chemical concentrations were comparable in patients with CKD and healthy individuals from contemporaneous National Health and Nutrition Examination Survey cohorts. Phthalates were the only class with a trend toward higher exposure in patients with CKD. There was an inverse relationship between exposure and the eGFR slopes for bisphenol F, mono-(3-carboxypropyl) phthalate, mono-benzyl phthalate, mono-[2-(carboxymethyl)hexyl] phthalate, and melamine. There were no associations between organic pollutant exposure and cardiovascular outcomes. Limitations: Small sample size, evaluation of single rather than combined exposures. Conclusions: Simultaneous measurement of multiple organic pollutants in adults with CKD is feasible. Exposure levels are comparable with healthy individuals. Select contaminants, especially in the phthalate class, may be associated with more rapid deterioration in kidney function.


The effect of exposure to organic pollutants has not been studied in adults with chronic kidney disease. (CKD). To fill this gap, we measured the exposure to a wide range of chemicals that are found in plastics, personal care products, and food preparation. Overall, the exposure was similar to that noted in the healthy population living in the United States. Only select compounds, mainly phthalates, demonstrated a trend with a more rapid decline in kidney function. These findings provide a useful reference for future studies that aim to evaluate organic pollutant exposure in patients with CKD. This is significant because these exposures represent a modifiable risk factor for disease progression through alterations in diet or lifestyle.

3.
Environ Int ; 184: 108446, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38252984

RESUMO

Benzylalkyldimethylammonium (BACs), dialkyldimethylammonium (DDACs), and alkyltrimethylammonium compounds (ATMACs) are quaternary ammonium compounds (QACs) used widely as biocides, disinfectants, and sanitizers. Owing to their toxicity, human exposure to this class of chemicals is a concern. Pet animals are sentinels of human exposure to several indoor environmental chemicals. For the first time, we measured 7 BACs, 6 DDACs, 6 ATMACs, and 8 metabolites of BACs in urine and feces of pet dogs and cats from New York State, USA. We found widespread occurrence of QACs in feces, with median concentration of ∑All (sum concentration of all 27 QAC analytes) at 9680 and 1260 ng/g dry weight (dw) in dog and cat feces, respectively. BACs were the most abundant compounds among the four types of QACs, accounting for 64 % and 57 % of ∑All in dog and cat feces, respectively, followed by DDACs (33 % and 34 %, respectively), ATMACs (4 % and 9 %, respectively), and BAC metabolites (0.2 % and 0.3 %, respectively). However, in urine, only ω-carboxylic acid metabolites of BACs were found at median concentrations at 2.08 and 0.28 ng/mL in dogs and cats, respectively. Samples collected from animal shelters contained elevated levels of QACs than those from homes of pet owners. A significant positive correlation was found among the four types of QACs analyzed, which suggested usage of these chemicals in combination as mixtures. Based on the concentrations measured in feces, and through a reverse dosimetry approach, the median cumulative daily intakes (CDIs) of QACs were estimated to be 49.4 and 4.75 µg/kg body weight (BW)/day for dogs and cats, respectively. This study provides first evidence that pet dogs and cats are exposed to QACs at significant levels that warrant further attention.


Assuntos
Doenças do Gato , Desinfetantes , Doenças do Cão , Humanos , Gatos , Cães , Animais , New York , Compostos de Amônio Quaternário/análise , Fezes/química
4.
Environ Sci Technol ; 58(4): 2089-2101, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38231021

RESUMO

North American river otters (Lontra canadensis) are top predators in riverine ecosystems and are vulnerable to per- and polyfluoroalkyl substance (PFAS) exposure. Little is known about the magnitude of exposure and tissue distribution of PFAS in river otters. We measured 45 PFAS in various tissues of 42 river otters collected from several watersheds in the state of West Virginia, USA. The median concentrations of ∑All (sum concentration of 45 PFAS) varied among tissues in the following decreasing order: liver (931 ng/g wet weight) > bile > pancreas > lung > kidney > blood > brain > muscle. Perfluoroalkylsulfonates (PFSAs) were the predominant compounds accounting for 58-75% of the total concentrations, followed by perfluoroalkyl carboxylates (PFCAs; 21-35%). 8:2 fluorotelomer sulfonate (8:2 FTS), 10:2 FTS, and 6:2 chlorinated polyfluoroalkyl ether sulfonate were frequently found in the liver (50-90%) and bile (96-100%), whereas hexafluoropropylene oxide dimer acid (HFPO-DA) was rarely found. The hepatic concentrations of ∑All in river otters collected downstream of a fluoropolymer production facility located along the Ohio River were 2-fold higher than those in other watersheds. The median whole body burden of ∑All was calculated to be 1580 µg. PFOS and perfluorooctanoic acid (PFOA) concentrations in whole blood of some river otters exceeded the human toxicity reference values, which warrant further studies.


Assuntos
Fluorocarbonos , Lontras , Poluentes Químicos da Água , Animais , Humanos , West Virginia , Ecossistema , Fluorocarbonos/análise , Fígado , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA