Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
mSphere ; 9(4): e0008724, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38509042

RESUMO

The gut microbiome is a symbiotic microbial community associated with the host and plays multiple important roles in host physiology, nutrition, and health. A number of factors have been shown to influence the gut microbiome, among which diet is considered to be one of the most important; however, the relationship between diet composition and gut microbiota in wild mammals is still not well recognized. Herein, we characterized the gut microbiota of bats and examined the effects of diet, host taxa, body size, gender, elevation, and latitude on the gut microbiota. The cytochrome C oxidase subunit I (COI) gene and 16S rRNA gene amplicons were sequenced from the feces of eight insectivorous bat species in southern China, including Miniopterus fuliginosus, Aselliscus stoliczkanus, Myotis laniger, Rhinolophus episcopus, Rhinolophus osgoodi, Rhinolophus ferrumequinum, Rhinolophus affinis, and Rhinolophus pusillus. The results showed that the composition of gut microbiome and diet exhibited significant differences among bat species. Diet composition and gut microbiota were significantly correlated at the order, family, genus, and operational taxonomic unit levels, while certain insects had a marked effect on the gut microbiome at specific taxonomic levels. In addition, elevation, latitude, body weight of bats, and host species had significant effects on the gut microbiome, but phylosymbiosis between host phylogeny and gut microbiome was lacking. These findings clarify the relationship between gut microbiome and diet and contribute to improving our understanding of host ecology and the evolution of the gut microbiome in wild mammals. IMPORTANCE: The gut microbiome is critical for the adaptation of wildlife to the dynamic environment. Bats are the second-largest group of mammals with short intestinal tract, yet their gut microbiome is still poorly studied. Herein, we explored the relationships between gut microbiome and food composition, host taxa, body size, gender, elevation, and latitude. We found a significant association between diet composition and gut microbiome in insectivorous bats, with certain insect species having major impacts on gut microbiome. Factors like species taxa, body weight, elevation, and latitude also affected the gut microbiome, but we failed to detect phylosymbiosis between the host phylogeny and the gut microbiome. Overall, our study presents novel insights into how multiple factors shape the bat's gut microbiome together and provides a study case on host-microbe interactions in wildlife.


Assuntos
Quirópteros , Dieta , Fezes , Microbioma Gastrointestinal , Filogenia , RNA Ribossômico 16S , Animais , Quirópteros/microbiologia , RNA Ribossômico 16S/genética , Fezes/microbiologia , Masculino , Feminino , China , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Geografia , Insetos/microbiologia , Complexo IV da Cadeia de Transporte de Elétrons/genética
2.
J Vet Sci ; 24(3): e48, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37271515

RESUMO

BACKGROUND: Senecavirus A (SVA), a member of the family Picornaviridae, is newly discovered, which causes vesicular lesions, lameness in swine, and even death in neonatal piglets. SVA has rapidly spread worldwide in recent years, especially in Asia. OBJECTIVES: We conducted a global meta-analysis and systematic review to determine the status of SVA infection in pigs. METHODS: Through PubMed, VIP Chinese Journals Database, China National Knowledge Infrastructure, and Wanfang Data search data from 2014 to July 26, 2020, a total of 34 articles were included in this analysis based on our inclusion criteria. We estimated the pooled prevalence of SVA in pigs by the random effects model. A risk of bias assessment of the studies and subgroup analysis to explain heterogeneity was undertaken. RESULTS: We estimated the SVA prevalence to be 15.90% (1,564/9,839; 95% confidence interval [CI], 44.75-65.89) globally. The prevalence decreased to 11.06% (945/8,542; 95% CI, 28.25-50.64) after 2016. The highest SVA prevalence with the VP1-based RT-PCR and immunohistochemistry assay was 58.52% (594/1,015; 95% CI, 59.90-83.96) and 85.54% (71/83; 95% CI, 76.68-100.00), respectively. Besides, the SVA prevalence in piglet herds was the highest at 71.69% (119/166; 95% CI, 68.61-98.43) (p < 0.05). Moreover, our analysis confirmed that the subgroups, including country, sampling year, sampling position, detected gene, detection method, season, age, and climate, could be the heterogeneous factors associated with SVA prevalence. CONCLUSIONS: The results indicated that SVA widely exists in various countries currently. Therefore, more prevention and control policies should be proposed to enhance the management of pig farms and improve breeding conditions and the environment to reduce the spread of SVA.


Assuntos
Infecções por Picornaviridae , Picornaviridae , Doenças dos Suínos , Animais , Suínos , Infecções por Picornaviridae/epidemiologia , Infecções por Picornaviridae/veterinária , Prevalência , Picornaviridae/genética
3.
Mol Ecol ; 32(16): 4695-4707, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37322601

RESUMO

Skin microbiota play an important role in protecting bat hosts from the fungal pathogen Pseudogymnoascus destructans, which has caused dramatic bat population declines and extinctions. Recent studies have provided insights into the bacterial communities of bat skin, but variation in skin bacterial community structure in the context of the seasonal dynamics of fungal invasion, as well as the processes that drive such variation, remain largely unexplored. In this study, we characterized bat skin microbiota over the course of the bat hibernation and active season stages and used a neutral model of community ecology to determine the relative roles of neutral and selective processes in driving microbial community variation. Our results showed significant seasonal shifts in skin community structure, as well as less diverse microbiota in hibernation than in the active season. Skin microbiota were influenced by the environmental bacterial reservoir. During both the hibernation and active season stages, more than 78% of ASVs in bat skin microbiota were consistent with neutral distribution, implying that neutral processes, that is, dispersal or ecological drift contributing the most to shifts in skin microbiota. In addition, the neutral model showed that some ASVs were actively selected by the bats from the environmental bacterial reservoir, accounting for approximately 20% and 31% of the total community during hibernation and active season stages, respectively. Overall, this research provides insights into the assemblage of bat-associated bacterial communities and will aid in the development of conservation strategies against fungal disease.


Assuntos
Quirópteros , Hibernação , Microbiota , Micoses , Animais , Quirópteros/microbiologia , Estações do Ano , Micoses/microbiologia , Pele/microbiologia , Bactérias/genética , Microbiota/genética
4.
Virulence ; 14(1): 2156185, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36599840

RESUMO

Skin acts as a mechanical barrier between the body and its surrounding environment and plays an important role in resistance to pathogens. However, we still know little regarding skin responses to physiological changes, particularly with regard to responses against potential pathogens. We herein executed RNA-seq on the wing of the Rhinolophus ferrumequinum to assess gene-expression variations at four physiological stages: pre-hibernation, hibernation (early-hibernation and late-hibernation), and post-hibernation, as well as the gene-expression patterns of infected and uninfected bats with the Pseudogymnoascus destructans (Pd). Our results showed that a greater number of differentially expressed genes between the more disparate physiological stages. Functional enrichment analysis showed that the down-regulated response pathways in hibernating bats included phosphorus metabolism and immune response, indicating metabolic suppression and decreased whole immune function. We also found up-regulated genes in post-hibernating bats that included C-type lectin receptor signalling, Toll-like receptor signalling pathway, and cell adhesion, suggesting that the immune response and skin integrity of the wing were improved after bats emerged from their hibernation and that this facilitated clearing Pd from the integument. Additionally, we found that the genes involved in cytokine or chemokine activity were up-regulated in late-hibernation compared to early-hibernation and that FOSB regulation of immune cell activation was differentially expressed in bats infected with Pd during late-hibernation, implying that the host's innate immune function was enhanced during late-hibernation so as to resist pathogenic infection. Our findings highlight the concept that maintenance of intrinsic immunity provides protection against pathogenic infections in highly resistant bats.


Assuntos
Quirópteros , Hibernação , Animais , Transcriptoma , Quirópteros/genética , Hibernação/genética , Pele
5.
Front Microbiol ; 13: 808788, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432245

RESUMO

Host-associated skin bacteria are essential for resisting pathogen infections and maintaining health. However, we have little understanding of how chiropteran skin microbiota are distributed among bat species and their habitats, or of their putative roles in defending against Pseudogymnoascus destructans in China. In this study, we characterized the skin microbiomes of four bat species at five localities using 16S rRNA gene amplicon sequencing to understand their skin microbial composition, structure, and putative relationship with disease. The alpha- and beta-diversities of skin microbiota differed significantly among the bat species, and the differences were affected by environmental temperature, sampling sites, and host body condition. The chiropteran skin microbial communities were enriched in bacterial taxa that had low relative abundances in the environment. Most of the potential functions of skin microbiota in bat species were associated with metabolism. Focusing on their functions of defense against pathogens, we found that skin microbiota could metabolize a variety of active substances that could be potentially used to fight P. destructans. The skin microbial communities of bats in China are related to the environment and the bat host, and may be involved in the host's defense against pathogens.

6.
Environ Microbiol ; 24(3): 1484-1498, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34472188

RESUMO

The bats skin microbiota plays an important role in reducing pathogen infection, including the deadly fungal pathogen Pseudogymnoascus destructans, the causative agent of white-nose syndrome. However, the dynamic of skin bacterial communities response to environmental perturbations remains poorly described. We characterized skin bacterial community over time and space in Rhinolophus ferrumequinum, a species with high resistance to the infection with P. destructans. We collected environmental covariate data to determine what factors influenced changes in community structure. We observed significant temporal and spatial shifts in the skin bacterial community, which was mainly associated with variation in operational taxonomic units. The skin bacterial community differed by the environmental microbial reservoirs and was most influenced by host body condition, bat roosting temperature and geographic distance between sites, but was not influenced by pathogen infection. Furthermore, the skin microbiota was enriched in particular taxa with antifungal abilities, such as Enterococcus, Burkholderia, Flavobacterium, Pseudomonas, Corynebacterium and Rhodococcus. And specific strains of Pseudomonas, Corynebacterium and Rhodococcus even inhibited P. destructans growth. Our findings provide new insights in characterizing the variation in bacterial communities can inform us about the processes of driving community assembly and predict the host's ability to resist or survive pathogen infection.


Assuntos
Quirópteros , Microbiota , Animais , Antifúngicos , Bactérias/genética , Quirópteros/microbiologia , Microbiota/fisiologia , Nariz/microbiologia , Pseudomonas
7.
Microb Biotechnol ; 15(2): 469-481, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33559264

RESUMO

White-nose syndrome, a disease that is caused by the psychrophilic fungus Pseudogymnoascus destructans, has threatened several North America bat species with extinction. Recent studies have shown that East Asian bats are infected with P. destructans but show greatly reduced infections. While several factors have been found to contribute to these reduced infections, the role of specific microbes in limiting P. destructans growth remains unexplored. We isolated three bacterial strains with the ability to inhibit P. destructans, namely, Pseudomonas yamanorum GZD14026, Pseudomonas brenneri XRD11711 and Pseudomonas fragi GZD14479, from bats in China. Pseudomonas yamanorum, with the highest inhibition score, was selected to extract antifungal active substance. Combining mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy analyses, we identified the active compound inhibiting P. destructans as phenazine-1-carboxylic acid (PCA), and the minimal inhibitory concentration (MIC) was 50.12 µg ml-1 . Whole genome sequencing also revealed the existence of PCA biosynthesis gene clusters. Gas chromatography-mass spectrometry (GC-MS) analysis identified volatile organic compounds. The results indicated that 10 ppm octanoic acid, 100 ppm 3-tert-butyl-4-hydroxyanisole (isoprenol) and 100 ppm 3-methyl-3-buten-1-ol (BHA) inhibited the growth of P. destructans. These results support that bacteria may play a role in limiting the growth of P. destructans on bats.


Assuntos
Ascomicetos , Quirópteros , Animais , Ascomicetos/genética , Bactérias , Quirópteros/microbiologia , Quirópteros/fisiologia , Pseudomonas
8.
Front Vet Sci ; 8: 791237, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34977222

RESUMO

Chytridiomycosis is an amphibian fungal disease caused by Batrachochytrium dendrobatidis (Bd), which has caused large-scale death and population declines on several continents around the world. To determine the current status of Bd infection in amphibians, we conducted a global meta-analysis. Using PubMed, ScienceDirect, SpringerLink, China National Knowledge Infrastructure (CNKI) and Wanfang database searches, we retrieved a total of 111 articles from 2000 to 2021. Based on these, we estimated the Bd prevalence to be 18.54% (95% CI: 13.76-20.52) in current extent amphibians. Among these populations, the prevalence of Bd in Asia was the lowest at 7.88% (95% CI: 1.92-8.71). Further, no Bd infection was found in Vietnam. However, the prevalence of Bd in Oceania was the highest at 36.34% (95% CI: 11.31-46.52). The Bd prevalence in Venezuela was as high as 49.77% (95% CI: 45.92-53.62). After 2009, the global Bd prevalence decreased to 18.91% (95% CI: 13.23-21.56). The prevalence of Bd in epizootic populations was significantly higher than enzootic populations. The highest prevalence of Bd was detected with real-time PCR at 20.11% (95% CI: 13.12-21.38). The prevalence of Bd in frogs was the highest at 20.04% (95% CI: 13.52-21.71), and this different host was statistically significant (P < 0.05). At the same time, we analyzed the geographic factors (longitude, latitude, elevation, rainfall and temperature) that impacted the fungal prevalence in amphibians. Our meta-analysis revealed that factors including region, disease dynamic, detection method, host and climate may be sources of the observed heterogeneity. These results indicate that chytridiomycosis was a consistent threat to amphibians from 2000 to 2021. Based on different habitat types and geographical conditions, we recommend formulating corresponding control plans and adopting reasonable and efficient biological or chemical methods to reduce the severity of such diseases.

9.
PeerJ ; 8: e9003, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435532

RESUMO

BACKGROUND: The gut microbiota is closely linked to host development, diet and health and is influenced by both the host and the environment. Although many studies have focused on the dynamics of the gut microbiota during development in captive animals, few studies have focused on the dynamics of the gut microbiota during development in wild animals, especially for the order Chiroptera. METHODS: In this study, we characterized the gut microbiota of the wild Asian particolored bat (Vespertilio sinensis) from 1 day to 6 weeks after birth. We explored the changes in their gut microbial community compositions, examined possible influencing factors, and predicted the feeding transition period. RESULTS: The gut microbiota changed during the development of V. sinensis. The alpha diversity of the bats' gut microbiota gradually increased but did not change significantly from the 1st day to the 4th week after birth; however, the alpha diversity decreased significantly in week 5, then stabilized. The beta diversity differed slightly in weeks 4-6. In week 4, the fecal samples showed the highest diversity in bacterial community composition. Thus, we predicted that the potential feeding transition period for V. sinensis may occur during week 4. Redundancy analysis showed that age and body mass index significantly affected the compositional changes of the gut microbiota in Asian particolored bats. CONCLUSION: The gut microbiota changed during the development of V. sinensis. We suggest that changes in the alpha and beta diversity during week 4 after birth indicate a potential feeding transition, highlighting the importance of diet in the gut microbiota during the development of V. sinensis.

10.
Front Microbiol ; 10: 2247, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632369

RESUMO

A large number of microorganisms colonize the intestines of animals. The gut microbiota plays an important role in nutrient metabolism and affects a number of physiological mechanisms in the host. Studies have shown that seasonal changes occur in the intestinal microbes of mammals that hibernate seasonally. However, these studies only focused on ground squirrels and bears. It remains unclear how hibernation might affect the intestinal microbes of bats. In this study, we measured microbial diversity and composition in the gut of Rhinolophus ferrumequinum in different periods (early spring, early summer, late summer, torpor, and interbout arousal) using 16S ribosomal RNA gene amplicon sequencing and PICRUSt to predict functional profiles. We found seasonal changes in the diversity and composition of the gut microbes in R. ferrumequinum. The diversity of gut microbiota was highest in the late summer and lowest in the early summer. The relative abundance of Proteobacteria was highest in the early summer and significantly lower in other periods. The relative abundance of Firmicutes was lowest in the early summer and significantly increased in the late summer, followed by a significant decrease in the early winter and early spring. The relative abundance of Tenericutes was significantly higher in the early spring compared with other periods. The results of functional prediction by PICRUSt showed seasonal variations in the relative abundance of metabolism-related pathways, including lipid metabolism, carbohydrate metabolism, and energy metabolism. Functional categories for carbohydrate metabolism had significantly lower relative abundance in early winter-torpor compared with late summer, while those associated with lipid metabolism had significantly higher relative abundance in the early winter compared with late summer. Overall, our results show that seasonal physiological changes associated with hibernation alter the gut microbial community of R. ferrumequinum. Hibernation may also alter the metabolic function of intestinal microbes, possibly by converting the gut microflora from carbohydrate-related to lipid-related functional categories. This study deepens our understanding of the symbiosis between hibernating mammals and gut microbes.

11.
Mol Ecol ; 28(11): 2944-2954, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31063664

RESUMO

Niche expansion and shifts are involved in the response and adaptation to environmental changes. However, it is unclear how niche breadth evolves and changes toward higher-quality resources. Myotis pilosus is both an insectivore and a piscivore. We examined the dietary composition and seasonality in M. pilosus and the closely related Myotis fimbriatus using next-generation DNA sequencing. We tested whether resource variation or resource partitioning help explain the dietary expansion from insects to fish in M. pilosus. While diet composition and diversity varied significantly between summer and autumn, the proportion of fish-eating individuals did not significantly change between seasons in M. pilosus. Dietary overlap between M. pilosus and M. fimbriatus during the same seasons was much higher than within individual species across seasons. We recorded a larger body size, hind foot length, and body mass in M. pilosus than in M. fimbriatus and other insectivorous trawling bats from China. Similar morphological differences were found between worldwide fishing bats and nonfishing trawling bats. Our results suggest that variation in insect availability or interspecific competition may not play important roles in the dietary expansion from insects to fish in M. pilosus. Myotis pilosus has morphological advantages that may help it use fish as a diet component. The morphological advantage promoting dietary niche evolution toward higher quality resources may be more important than variation in the original resource and the effects of interspecific competition.


Assuntos
Quirópteros/anatomia & histologia , Dieta , Ecossistema , Comportamento Predatório , Animais , Fezes , Peixes , Estações do Ano
12.
J Org Chem ; 83(1): 437-442, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29191008

RESUMO

Przewalskin A, a novel C23 terpenoid with anti-HIV-1 activity from Salvia przewalskii Maxim, was formed in 10 steps via isorosmanol from (+)-carnosic acid. The synthetic strategy was inspired primarily by the biogenetic hypothesis and was enabled by epoxidation, epoxide ring opening, and lactonization in one pot to prepare the 11,12-dimethoxy isorosmanol, and bismuthonium ylide-induced ring expansion of o-quinone to construct the 2-acyl-3-hydroxytropone.


Assuntos
Abietanos/química , Materiais Biomiméticos/síntese química , Cicloexanonas/síntese química , Diterpenos/síntese química , Abietanos/síntese química , Materiais Biomiméticos/química , Cicloexanonas/química , Diterpenos/química , Conformação Molecular
13.
Org Lett ; 18(24): 6524, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27978699
14.
Org Lett ; 18(18): 4578-81, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27571381

RESUMO

A highly stereocontrolled synthesis of paeoveitol has been developed in 26% yield, in 7 steps from commercially available materials. The synthetic strategy was inspired primarily by the biogenetic hypothesis and was enabled by hetero-Diels-Alder cycloaddition to construct the target molecular framework.


Assuntos
Materiais Biomiméticos/síntese química , Diterpenos/síntese química , Materiais Biomiméticos/química , Reação de Cicloadição , Diterpenos/química , Estrutura Molecular
15.
Org Lett ; 18(4): 792-5, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26836947

RESUMO

A highly stereocontrolled construction of the C-5-epi ABCDE-ring system of rubriflordilactone B has been developed. The present synthesis features a convergent strategy to construct the C-5-epi AB-ring utilizing Mukaiyama-Michael reaction and forge the CDE ring in one step using intramolecular [2 + 2 + 2] cycloaddition of triynes.


Assuntos
Triterpenos/química , Triterpenos/síntese química , Ciclização , Reação de Cicloadição , Estrutura Molecular , Estereoisomerismo
16.
Chemistry ; 20(52): 17311-4, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25377658

RESUMO

A novel, Cu(OAc)2/TEMPO promoted one-step approach for the preparation of fully substituted pyrimidines from readily available amino acid esters has been described. In this reaction, the amino acid esters act as the only N-C sources for the construction of corresponding pyrimidines. The mechanism of this process includes oxidative dehydrogenation, the generation of an imine radical, and a formal [3+3] cycloaddition. This methodology proves to be a high atom-economic and straightforward strategy for the synthesis of pyrimidines and diverse substrates which are substituted by various functional groups have been afforded in moderate to good yield.


Assuntos
Aminoácidos/química , Cobre/química , Óxidos N-Cíclicos/química , Pirimidinas/síntese química , Ciclização , Ésteres , Estrutura Molecular , Oxirredução , Pirimidinas/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA