Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 8(12): 19137-19155, 2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27845895

RESUMO

Malignant cancer cells frequently secrete significant amounts of transforming growth factor beta (TGF-ß), hyaluronan (HA) and hyaluronidases to facilitate metastasizing to target organs. In a non-canonical signaling, TGF-ß binds membrane hyaluronidase Hyal-2 for recruiting tumor suppressors WWOX and Smad4, and the resulting Hyal-2/WWOX/Smad4 complex is accumulated in the nucleus to enhance SMAD-promoter dependent transcriptional activity. Yeast two-hybrid analysis showed that WWOX acts as a bridge to bind both Hyal-2 and Smad4. When WWOX-expressing cells were stimulated with high molecular weight HA, an increased formation of endogenous Hyal-2/WWOX/Smad4 complex occurred rapidly, followed by relocating to the nuclei in 20-40 min. In WWOX-deficient cells, HA failed to induce Smad2/3/4 relocation to the nucleus. To prove the signaling event, we designed a real time tri-molecular FRET analysis and revealed that HA induces the signaling pathway from ectopic Smad4 to WWOX and finally to p53, as well as from Smad4 to Hyal-2 and then to WWOX. An increased binding of the Smad4/Hyal-2/WWOX complex occurs with time in the nucleus that leads to bubbling cell death. In contrast, HA increases the binding of Smad4/WWOX/p53, which causes membrane blebbing but without cell death. In traumatic brain injury-induced neuronal death, the Hyal-2/WWOX complex was accumulated in the apoptotic nuclei of neurons in the rat brains in 24 hr post injury, as determined by immunoelectron microscopy. Together, HA activates the Hyal-2/WWOX/Smad4 signaling and causes bubbling cell death when the signaling complex is overexpressed.


Assuntos
Morte Celular/fisiologia , Ácido Hialurônico/metabolismo , Neoplasias/patologia , Oxirredutases/metabolismo , Transdução de Sinais/fisiologia , Proteína Smad4/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Transferência Ressonante de Energia de Fluorescência , Humanos , Imunoprecipitação , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Neoplasias/metabolismo , Ratos , Técnicas do Sistema de Duplo-Híbrido , Oxidorredutase com Domínios WW
2.
Biomed Rep ; 4(3): 349-354, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26998274

RESUMO

Resveratrol (Re), a stilbenoid, is associated with a potential benefit in controlling certain biomarkers in type II diabetes. Genistein (Ge), a phytoestrogen, may act as an antioxidant and thus may diminish damaging effects of free radicals in tissues. In the present study, a potential synergistic antioxidant effect of an Re/Ge combination on high-glucose (HG) incubation in Madin-Darby canine kidney (MDCK) epithelial cells was evaluated. Compared with the treatment of Re or Ge alone, the Re/Ge combination synergistically decreased intracellular reactive oxygen species (ROS) and hydroxyl radicals in MDCK cells. This synergistic antioxidant effect correlated with the inhibition of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression and an increase in γ-glutamylcysteine synthetase expression. In addition, mitochondrial complex I, NADPH oxidase, xanthine oxidase and lipoxygenase contributed towards ROS overproduction when the MDCK cells were incubated with HG. In conclusion, the Re/Ge combination synergistically enhanced the antioxidant effect in HG-incubated kidney cells, possibly through an enhanced antioxidant regulation mechanism. The Re/Ge combination may be a potential benefit against oxidative stress in diabetes mellitus.

3.
PLoS One ; 9(4): e94180, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24714453

RESUMO

Shikonin is a quinone-containing natural product that induces the apoptotic death of some cancer cell lines in culture through increasing intracellular reactive oxygen species (ROS). Quinone-based drugs have shown potential in the clinic, making shikonin an interesting compound to study. Our previous study found that shikonin induces apoptosis in neuroblastoma by induction of ROS, but its mechanism of action and scope of activity are unknown. In this study, we investigated the mode of oxidative stress of shikonin in human glioma cells. ROS induction by shikonin was of mitochondrial origin, as demonstrated by detection of superoxide with MitoSOX Red. Pre-incubation of shikonin with inhibitors of different complexes of the respiratory chain suggested that shikonin-induced ROS production occurred via complex II. In addition, NADPH oxidase and lipooxygenase are two other main ROS-generated sites in shikonin treatment. ROS production by shikonin resulted in the inhibition of nuclear translocation of Nrf2. Stable overexpression of Nrf2 in glioma cells inhibited ROS generation by shikonin. ROS generation from mitochondrial complex II, NADPH oxidase and lipooxygenase is likely the primary mechanism by which shikonin induces apoptosis in glioma cells. These findings also have relevance to the development of certain ROS producers as anti-cancer agents. These, along with shikonin have potential as novel chemotherapeutic agents on human glioma.


Assuntos
Glioma/metabolismo , Naftoquinonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular , Linhagem Celular Tumoral , Citocromos c/metabolismo , Citosol/metabolismo , Glioma/genética , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
4.
PLoS One ; 7(4): e35123, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22529978

RESUMO

INTRODUCTION: The 78-kDa glucose-regulated protein (GRP78) is induced in the cancer microenvironment and can be considered as a novel predictor of responsiveness to chemotherapy in many cancers. In this study, we found that intracellular reactive oxygen species (ROS) and nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation were higher in GRP78 knockdown DLD-1 colon cancer cells compared with scrambled control cells. METHODOLOGY/PRINCIPAL FINDINGS: Treatment with epirubicin in GRP78 knockdown DLD-1 cells enhanced apoptosis and was associated with decreased production of intracellular ROS. In addition, apoptosis was increased by the antioxidants propyl gallate (PG) and dithiothreitol (DTT) in epirubicin-treated scrambled control cells. Epirubicin-treated GRP78 knockdown cells resulted in more inactivated Akt pathway members, such as phosphorylated Akt and GSK-3ß, as well as downstream targets of ß-catenin expression. Knockdown of Nrf2 with small interfering RNA (siRNA) increased apoptosis in epirubicin-treated GRP78 knockdown cells, which suggested that Nrf2 may be a primary defense mechanism in GRP78 knockdown cells. We also demonstrated that epirubicin-treated GRP78 knockdown cells could decrease survival pathway signaling through the redox activation of protein phosphatase 2A (PP2A), which is a serine/threonine phosphatase that negatively regulates the Akt pathway. CONCLUSIONS: Our results indicate that epirubicin decreased the intracellular ROS in GRP78 knockdown cells, which decreased survival signaling through both the Akt pathway and the activation of PP2A. Together, these mechanisms contributed to the enhanced level of epirubicin-induced apoptosis that was observed in the GRP78 knockdown cells.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Apoptose/genética , Neoplasias do Colo/metabolismo , Epirubicina/farmacologia , Proteínas de Choque Térmico/genética , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Regulação para Baixo/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Ativação Enzimática/genética , Inativação Gênica , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Fosfatase 2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA