Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 630(8017): 613-618, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811737

RESUMO

A large qubit capacity and an individual readout capability are two crucial requirements for large-scale quantum computing and simulation1. As one of the leading physical platforms for quantum information processing, the ion trap has achieved a quantum simulation of tens of ions with site-resolved readout in a one-dimensional Paul trap2-4 and of hundreds of ions with global observables in a two-dimensional (2D) Penning trap5,6. However, integrating these two features into a single system is still very challenging. Here we report the stable trapping of 512 ions in a 2D Wigner crystal and the sideband cooling of their transverse motion. We demonstrate the quantum simulation of long-range quantum Ising models with tunable coupling strengths and patterns, with or without frustration, using 300 ions. Enabled by the site resolution in the single-shot measurement, we observe rich spatial correlation patterns in the quasi-adiabatically prepared ground states, which allows us to verify quantum simulation results by comparing the measured two-spin correlations with the calculated collective phonon modes and with classical simulated annealing. We further probe the quench dynamics of the Ising model in a transverse field to demonstrate quantum sampling tasks. Our work paves the way for simulating classically intractable quantum dynamics and for running noisy intermediate-scale quantum algorithms7,8 using 2D ion trap quantum simulators.

2.
Sci Total Environ ; 666: 1071-1079, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30970473

RESUMO

To study adaptation of largemouth bass (Micropterus salmoides) to hypoxic stress, we investigated physiological responses and lactate metabolism of the fish under acute hypoxia. The objectives of this study were to (a) observe changes in glucose, glycogen, and lactate content; (b) detect the activity of lactate dehydrogenase (LDH) in serum, brain, heart, and liver tissues; and (c) quantify the dynamic gene expression of AMP activated protein kinase alpha (AMPKα), hypoxia-inducible factor-1 alpha (HIF-1α), monocarboxylate transporter 1 (MCT1), monocarboxylate transporter 4 (MCT4), and lactate dehydrogenase-a (LDHa) following exposure to hypoxia. The fish were subjected to two hypoxia stresses (dissolved oxygen [DO] 1.20 ±â€¯0.2 mg/L and 3.50 ±â€¯0.3 mg/L, respectively) for 24 h. Our results showed that hypoxic stress significantly increased the decomposition of liver glycogen and significantly increased the concentration of blood glucose; however, the muscle glycogen content was not significantly decreased, which indicates that liver glycogen was the main energy source under acute hypoxia. Moreover, hypoxia led to accumulation of a large amount of lactic acid in tissues, possibly due to the activity of lactic acid dehydrogenase, but this process was delayed in the heart and brain relative to the liver. Additionally, hypoxia induced the expression of AMPKα, HIF-1α, MCT1, MCT4, and LDHa, suggesting that glycometabolism had switched from aerobic to anaerobic. Our results contribute to a better understanding of the molecular mechanisms of the response to hypoxia in largemouth bass.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Bass/fisiologia , Proteínas de Peixes/genética , Ácido Láctico/metabolismo , Oxigênio/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas de Peixes/metabolismo , Estresse Fisiológico
3.
Phys Rev Lett ; 122(1): 010503, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31012688

RESUMO

We experimentally realize a universal set of single-bit and two-bit geometric quantum gates by adiabatically controlling solid-state spins in a diamond defect. Compared with the nonadiabatic approach, the adiabatic scheme for geometric quantum computation offers a unique advantage of inherent robustness to parameter variations, which is explicitly demonstrated in our experiment by showing that the single-bit gates remain unchanged when the driving field amplitude varies by a factor of 2 or the detuning fluctuates in a range comparable to the inverse of the gate time. The reported adiabatic control technique and its convenient implementation offer a paradigm for achieving quantum computation through robust geometric quantum gates, which is important for quantum information systems with parameter-fluctuation noise such as those from the inhomogeneous coupling or the spectral diffusion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA