Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 19(5): 744-757, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38579711

RESUMO

Precise insertion of fluorescent proteins into lineage-specific genes in human pluripotent stem cells (hPSCs) presents challenges due to low knockin efficiency and difficulties in isolating targeted cells. To overcome these hurdles, we present the modified mRNA (ModRNA)-based Activation for Gene Insertion and Knockin (MAGIK) method. MAGIK operates in two steps: first, it uses a Cas9-2A-p53DD modRNA with a mini-donor plasmid (without a drug selection cassette) to significantly enhance efficiency. Second, a deactivated Cas9 activator modRNA and a 'dead' guide RNA are used to temporarily activate the targeted gene, allowing for live cell sorting of targeted cells. Consequently, MAGIK eliminates the need for drug selection cassettes or labor-intensive single-cell colony screening, expediting precise gene editing. We showed MAGIK can be utilized to insert fluorescent proteins into various genes, including SOX17, NKX6.1, NKX2.5, and PDX1, across multiple hPSC lines. This underscores its robust performance and offers a promising solution for achieving knockin in hPSCs within a significantly shortened time frame.


Assuntos
Linhagem da Célula , Técnicas de Introdução de Genes , Células-Tronco Pluripotentes , Humanos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Linhagem da Célula/genética , Técnicas de Introdução de Genes/métodos , Genes Reporter , Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas/genética , Linhagem Celular , Edição de Genes/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Stem Cell Reports ; 19(4): 579-595, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38518781

RESUMO

Transcription factors (TFs) are pivotal in guiding stem cell behavior, including their maintenance and differentiation. Using single-cell RNA sequencing, we investigated TFs expressed in endothelial progenitors (EPs) derived from human pluripotent stem cells (hPSCs) and identified upregulated expression of SOXF factors SOX7, SOX17, and SOX18 in the EP population. To test whether overexpression of these factors increases differentiation efficiency, we established inducible hPSC lines for each SOXF factor and found only SOX17 overexpression robustly increased the percentage of cells expressing CD34 and vascular endothelial cadherin (VEC). Conversely, SOX17 knockdown via CRISPR-Cas13d significantly compromised EP differentiation. Intriguingly, we discovered SOX17 overexpression alone was sufficient to generate CD34+VEC+CD31- cells, and, when combined with FGF2 treatment, more than 90% of CD34+VEC+CD31+ EP was produced. These cells are capable of further differentiating into endothelial cells. These findings underscore an undiscovered role of SOX17 in programming hPSCs toward an EP lineage, illuminating pivotal mechanisms in EP differentiation.


Assuntos
Células Endoteliais , Fator 2 de Crescimento de Fibroblastos , Células-Tronco Pluripotentes , Fatores de Transcrição SOXF , Humanos , Antígenos CD34/metabolismo , Diferenciação Celular/genética , Células Endoteliais/metabolismo , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo
3.
Bioeng Transl Med ; 9(2): e10584, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38435822

RESUMO

A promising new field of genetically encoded ultrasound contrast agents in the form of gas vesicles has recently emerged, which could extend the specificity of medical ultrasound imaging. However, given the delicate genetic nature of how these genes are integrated and expressed, current methods of producing gas vesicle-expressing mammalian cell lines requires significant cell processing time to establish a clonal/polyclonal line that robustly expresses the gas vesicles sufficiently enough for ultrasound contrast. Here, we describe an inducible and drug-selectable acoustic reporter gene system that can enable gas vesicle expression in mammalian cell lines, which we demonstrate using HEK293T cells. Our drug-selectable construct design increases the stability and proportion of cells that successfully integrate all plasmids into their genome, thus reducing the amount of cell processing time required. Additionally, we demonstrate that our drug-selectable strategy forgoes the need for single-cell cloning and fluorescence-activated cell sorting, and that a drug-selected mixed population is sufficient to generate robust ultrasound contrast. Successful gas vesicle expression was optically and ultrasonically verified, with cells expressing gas vesicles exhibiting an 80% greater signal-to-noise ratio compared to negative controls and a 500% greater signal-to-noise ratio compared to wild-type HEK293T cells. This technology presents a new reporter gene paradigm by which ultrasound can be harnessed to visualize specific cell types for applications including cellular reporting and cell therapies.

5.
ACS Synth Biol ; 12(8): 2262-2270, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37523468

RESUMO

Neutrophils, a key innate immune component, are powerful effector leukocytes for mediating opposing effects on tumor progression and ameliorating pathogen infections. However, their short lifespan and complex purification process have limited neutrophil clinical applications. Here we combined genetic engineering technology with a nanodrug system to construct artificial neutrophils that display functions similar to those of native neutrophils. K562 and HL60 human leukemia cells were engineered to express the human G protein-coupled receptor hM4Di. Compared to the parental cells, engineered hM4Di-K562 and hM4Di-HL60 cells exhibited excellent chemotaxis ability towards clozapine-N-oxide (CNO) and superior bacteria phagocytic behavior, resembling native neutrophils. The antibacterial ability of the hM4Di-K562 cells was further enhanced by loading them with the glycopeptide vancomycin via mesoporous silica nanoparticles (Nano@Van). Our proposed artificial cell engineering platform provides a new avenue to investigate the physiological properties of neutrophils.


Assuntos
Nanopartículas , Neutrófilos , Humanos , Neutrófilos/química , Receptores Acoplados a Proteínas G , Engenharia Genética
6.
J Immunol Regen Med ; 202023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37089616

RESUMO

Immunotherapy is a powerful technique where immune cells are modified to improve cytotoxicity against cancerous cells to treat cancers that do not respond to surgery, chemotherapy, or radiotherapy. Expressing chimeric antigen receptor (CAR) in immune cells, typically T lymphocytes, is a practical modification that drives an immune response against cancerous tissue. CAR-T efficacy is suboptimal in solid tumors due to the tumor microenvironment (TME) that limits T lymphocyte cytotoxicity. In this study, we demonstrate that neutrophils differentiated from human pluripotent stem cells modified with AAVS1-inserted CAR constructs showed a robust cytotoxic effect against prostate-specific membrane antigen (PSMA) expressing LNCaP cells as a model for prostate cancer in vitro. Our results suggest that engineered CAR can significantly enhance the neutrophil anti-tumor effect, providing a new avenue in treating prostate cancers.

7.
Bioact Mater ; 27: 168-180, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37091063

RESUMO

Adoptive chimeric antigen receptor (CAR)-engineered natural killer (NK) cells have shown promise in treating various cancers. However, limited immunological memory and access to sufficient numbers of allogenic donor cells have hindered their broader preclinical and clinical applications. Here, we first assess eight different CAR constructs that use an anti-PD-L1 nanobody and/or universal anti-fluorescein (FITC) single-chain variable fragment (scFv) to enhance antigen-specific proliferation and anti-tumor cytotoxicity of NK-92 cells against heterogenous solid tumors. We next genetically engineer human pluripotent stem cells (hPSCs) with optimized CARs and differentiate them into functional dual CAR-NK cells. The tumor microenvironment responsive anti-PD-L1 CAR effectively promoted hPSC-NK cell proliferation and cytotoxicity through antigen-dependent activation of phosphorylated STAT3 (pSTAT3) and pSTAT5 signaling pathways via an intracellular truncated IL-2 receptor ß-chain (ΔIL-2Rß) and STAT3-binding tyrosine-X-X-glutamine (YXXQ) motif. Anti-tumor activities of PD-L1-induced memory-like hPSC-NK cells were further boosted by administering a FITC-folate bi-specific adapter that bridges between a programmable anti-FITC CAR and folate receptor alpha-expressing breast tumor cells. Collectively, our hPSC CAR-NK engineering platform is modular and could constitute a realistic strategy to manufacture off-the-shelf CAR-NK cells with immunological memory-like phenotype for targeted immunotherapy.

8.
Nat Commun ; 14(1): 2266, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37080958

RESUMO

Glioblastoma (GBM) is one of the most aggressive and lethal solid tumors in human. While efficacious therapeutics, such as emerging chimeric antigen receptor (CAR)-T cells and chemotherapeutics, have been developed to treat various cancers, their effectiveness in GBM treatment has been hindered largely by the blood-brain barrier and blood-brain-tumor barriers. Human neutrophils effectively cross physiological barriers and display effector immunity against pathogens but the short lifespan and resistance to genome editing of primary neutrophils have limited their broad application in immunotherapy. Here we genetically engineer human pluripotent stem cells with CRISPR/Cas9-mediated gene knock-in to express various anti-GBM CAR constructs with T-specific CD3ζ or neutrophil-specific γ-signaling domains. CAR-neutrophils with the best anti-tumor activity are produced to specifically and noninvasively deliver and release tumor microenvironment-responsive nanodrugs to target GBM without the need to induce additional inflammation at the tumor sites. This combinatory chemo-immunotherapy exhibits superior and specific anti-GBM activities, reduces off-target drug delivery and prolongs lifespan in female tumor-bearing mice. Together, this biomimetic CAR-neutrophil drug delivery system is a safe, potent and versatile platform for treating GBM and possibly other devastating diseases.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Camundongos , Feminino , Humanos , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Imunoterapia Adotiva , Neutrófilos , Linfócitos T , Microambiente Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Imunoterapia , Nanopartículas/uso terapêutico
9.
STAR Protoc ; 4(1): 101953, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36527716

RESUMO

Here, we present a protocol to efficiently direct human pluripotent stem cells (hPSCs) into hematopoietic stem and progenitor cells (HSPCs) under a chemically defined, albumin-free system. We describe the induction of aorta-gonad-mesonephros-like hematopoiesis from hPSCs into SOX17+ hemogenic endothelium and then into CD34+CD45+ HSPCs via application of Wnt activator and TGFß inhibitor, respectively. The generated HSPCs, characterized by flow cytometry and colony-forming unit assay, express definitive hematopoiesis markers and exhibit multilineage differentiation potential and the capacity to expand. For complete details on the use and execution of this protocol, please refer to Chang et al. (2022a, 2022b).1,2.


Assuntos
Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes , Humanos , Diferenciação Celular , Hematopoese , Antígenos CD34
10.
Cell Rep Methods ; 2(9): 100290, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36160051

RESUMO

CRISPR systems have revolutionized biomedical research because they offer an unprecedented opportunity for genome editing. However, a bottleneck of applying CRISPR systems in human pluripotent stem cells (hPSCs) is how to deliver CRISPR effectors easily and efficiently. Here, we developed modified mRNA (modRNA)-based CRIPSR systems that utilized Cas9 and p53DD or a base editor (ABE8e) modRNA for the purposes of knocking out genes in hPSCs via simple lipid-based transfection. ABE8e modRNA was employed to disrupt the splice donor site, resulting in defective splicing of the target transcript and ultimately leading to gene knockout. Using our modRNA CRISPR systems, we achieved 73.3% ± 11.2% and 69.6 ± 3.8% knockout efficiency with Cas9 plus p53DD modRNA and ABE8e modRNA, respectively, which was significantly higher than the plasmid-based systems. In summary, we demonstrate that our non-integrating modRNA-based CRISPR methods hold great promise as more efficient and accessible techniques for genome editing of hPSCs.


Assuntos
Edição de Genes , Células-Tronco Pluripotentes , Humanos , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , RNA Mensageiro/genética , Plasmídeos
11.
Bioact Mater ; 14: 313-320, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35386818

RESUMO

CRISPR/Cas-mediated genome editing in human pluripotent stem cells (hPSCs) offers unprecedented opportunities for developing in vitro disease modeling, drug screening and cell-based therapies. To efficiently deliver the CRISPR components, here we developed two all-in-one vectors containing Cas9/gRNA and inducible Cas13d/gRNA cassettes for robust genome editing and RNA interference respectively. These vectors utilized the PiggyBac transposon system, which allows stable expression of CRISPR components in hPSCs. The Cas9 vector PB-CRISPR exhibited high efficiency (up to 99%) of inducing gene knockout in both protein-coding genes and long non-coding RNAs. The other inducible Cas13d vector achieved extremely high efficiency in RNA knockdown (98% knockdown for CD90) with optimized gRNA designs. Taken together, our PiggyBac CRISPR vectors can serve as powerful toolkits for studying gene functions in hPSCs.

12.
Nano Lett ; 21(19): 8393-8400, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34542296

RESUMO

The outbreak of the SARS-CoV-2 caused the disease COVID-19 to spread globally. Specific and sensitive detection of SARS-CoV-2 facilitates early intervention and prevents the disease from spreading. Here, we present a solid-state CRISPR-Cas12a-assisted nanopore (SCAN) sensing strategy for the specific detection of SARS-CoV-2. We introduced a nanopore-sized counting method to measure the cleavage ratio of reporters, which is used as a criterion for positive/negative classification. A kinetic cleavage model was developed and validated to predict the reporter size distributions. The model revealed the trade-offs between sensitivity, turnaround time, and false-positive rate of the SARS-CoV-2 SCAN. With preamplification and a 30 min CRISPR Cas12a assay, we achieved excellent specificity against other common human coronaviruses and a limit of detection of 13.5 copies/µL (22.5 aM) of viral RNA at a confidence level of 95%. These results suggested that the SCAN could provide a rapid, sensitive, and specific analysis of SARS-CoV-2.


Assuntos
COVID-19 , Nanoporos , Sistemas CRISPR-Cas/genética , Humanos , Técnicas de Amplificação de Ácido Nucleico , SARS-CoV-2 , Sensibilidade e Especificidade
13.
Stem Cell Reports ; 16(9): 2395-2409, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34450037

RESUMO

Human pluripotent stem cell (hPSC)-derived pancreatic progenitors (PPs) provide promising cell therapies for type 1 diabetes. Current PP differentiation requires a high amount of Activin A during the definitive endoderm (DE) stage, making it economically difficult for commercial ventures. Here we identify a dose-dependent role for Wnt signaling in controlling DE differentiation without Activin A. While high-level Wnt activation induces mesodermal formation, low-level Wnt activation by a small-molecule inhibitor of glycogen synthase kinase 3 is sufficient for DE differentiation, yielding SOX17+FOXA2+ DE cells. BMP inhibition further enhances this DE differentiation, generating over 87% DE cells. These DE cells could be further differentiated into PPs and functional ß cells. RNA-sequencing analysis of PP differentiation from hPSCs revealed expected transcriptome dynamics and new gene regulators during our small-molecule PP differentiation protocol. Overall, we established a robust growth-factor-free protocol for generating DE and PP cells, facilitating scalable production of pancreatic cells for regenerative applications.


Assuntos
Diferenciação Celular/genética , Pâncreas/citologia , Pâncreas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Biomarcadores , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Células Cultivadas , Imunofluorescência , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunofenotipagem , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Via de Sinalização Wnt
14.
Stem Cell Res Ther ; 12(1): 305, 2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34051863

RESUMO

Cardiovascular diseases (CVD) remain the leading cause of death in the USA. Cardiomyocytes (CMs) derived from human pluripotent stem cells (hPSCs) provide a valuable cell source for regenerative therapy, disease modeling, and drug screening. Here, we established a hPSC line integrated with a mCherry fluorescent protein driven by the alpha myosin heavy chain (aMHC) promoter, which could be used to purify CMs based on the aMHC promoter activity in these cells. Combined with a fluorescent voltage indicator, ASAP2f, we achieved a dual reporter CM platform, which enables purification and characterization of CM subtypes and holds great potential for disease modeling and drug discovery of CVD.


Assuntos
Miócitos Cardíacos , Células-Tronco Pluripotentes , Diferenciação Celular , Humanos , Cadeias Pesadas de Miosina/genética
15.
ACS Sens ; 5(5): 1273-1280, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32370494

RESUMO

Nucleic acid detection methods are crucial for many fields such as pathogen detection and genotyping. Solid-state nanopore sensors represent a promising platform for nucleic acid detection due to its unique single molecule sensitivity and label-free electronic sensing. Here, we demonstrated the use of the glass nanopore for highly sensitive quantification of single-stranded circular DNAs (reporters), which could be degraded under the trans-cleavage activity of the target-specific CRISPR-Cas12a. We developed and optimized the Cas12a assay for HIV-1 analysis. We validated the concept of the solid-state CRISPR-Cas12a-assisted nanopores (SCAN) to specifically detect the HIV-1 DNAs. We showed that the glass nanopore sensor is effective in monitoring the cleavage activity of the target DNA-activated Cas12a. We developed a model to predict the total experimental time needed for making a statistically confident positive/negative call in a qualitative test. The SCAN concept combines the much-needed specificity and sensitivity into a single platform, and we anticipate that the SCAN would provide a compact, rapid, and low-cost method for nucleic acid detection at the point of care.


Assuntos
HIV-1 , Nanoporos , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA/genética , HIV-1/genética
16.
ACS Appl Mater Interfaces ; 12(22): 24599-24610, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32384232

RESUMO

Mesenchymal stem cells (MSCs) have a very low survival rate after in vivo delivery, which limits their great promise for treating human diseases. Various strategies have been studied to overcome this challenge. However, an overlooked but important potential is to apply exogenous signaling molecules as biochemical cues to promote MSC survival, presumably because it is well-known that MSCs themselves can release a variety of potent signaling molecules. Thus, the purpose of this work was to examine and understand whether the release of exogenous signaling molecules from hydrogels can promote the survival of MSC spheroids. Our data show that more vascular endothelial growth factor (VEGF) but not platelet-derived growth factor BB (PDGF-BB) were released from MSC spheroids in comparison with 2D cultured MSCs. Aptamer-functionalized fibrin hydrogel (aFn) could release exogenous VEGF and PDGF-BB in a sustained manner. PDGF-BB-loaded aFn promoted MSC survival by ∼70% more than VEGF-loaded aFn under the hypoxic condition in vitro. Importantly, PDGF-BB-loaded aFn could double the survival rate of MSC spheroids in comparison with VEGF-loaded aFn during the one-week test in vivo. Therefore, this work demonstrated that defined exogenous signaling molecules (e.g., PDGF-BB) can function as biochemical cues for promoting the survival of MSC spheroids in vivo.


Assuntos
Aptâmeros de Nucleotídeos/química , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada/química , Hidrogéis/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Animais , Becaplermina/química , Becaplermina/farmacologia , Fibrina/química , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/química , Fator A de Crescimento do Endotélio Vascular/farmacologia
17.
Biotechnol Bioeng ; 117(7): 2177-2186, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32277708

RESUMO

Proper cell-cycle progression is essential for the self-renewal and differentiation of human pluripotent stem cells (hPSCs). The fluorescent ubiquitination-based cell-cycle indicator (FUCCI) has allowed the dual-color visualization of the G1 and S/G2 /M phases in various dynamic models, but its application in hPSCs is not widely reported. In addition, lineage-specific FUCCI reporters have not yet been developed to analyze complex tissue-specific cell-cycle progression during hPSC differentiation. Desiring a robust tool for spatiotemporal reporting of cell-cycle events in hPSCs, we employed the CRISPR/Cas9 genome editing tool and successfully knocked the FUCCI reporter into the AAVS1 safe harbor locus of hPSCs for stable and constitutive FUCCI expression, exhibiting reliable cell-cycle-dependent fluorescence in both hPSCs and their differentiated progeny. We also established a cardiac-specific TNNT2-FUCCI reporter for lineage-specific cell-cycle monitoring of cardiomyocyte differentiation from hPSCs. This powerful and modular FUCCI system should provide numerous opportunities for studying human cell-cycle activity, and enable the identification and investigation of novel regulators for adult tissue regeneration.


Assuntos
Ciclo Celular , Células-Tronco Pluripotentes/citologia , Sistemas CRISPR-Cas , Linhagem Celular , Edição de Genes , Genes Reporter , Humanos , Microscopia de Fluorescência , Células-Tronco Pluripotentes/metabolismo , Ubiquitinação
18.
Bioact Mater ; 5(1): 74-81, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31989061

RESUMO

Cardiovascular disease, ranging from congenital heart disease to adult myocardial infarction, is the leading cause of death worldwide. In pursuit of reliable cardiovascular regenerative medicine, human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), offer plenty of potential cell-based applications. HPSCs are capable of proliferating indefinitely in an undifferentiated state, and are also pluripotent, being able to differentiate into virtually any somatic cell types given specific stepwise cues, thus representing an unlimited source to generate functional cardiovascular cells for heart regeneration. Here we recapitulated current advances in developing efficient protocols to generate hPSC-derived cardiovascular cell lineages, including cardiomyocytes, endothelial cells, and epicardial cells. We also discussed applications of hPSC-derived cells in combination with compatible bioactive materials, promising trials of cell transplantation in animal models of myocardial infarction, and potential hurdles to bring us closer to the ultimate goal of cell-based heart repair.

19.
Sci Rep ; 9(1): 16696, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31723192

RESUMO

Human pluripotent stem cells (hPSCs) offer tremendous promise in tissue engineering and cell-based therapies because of their unique combination of two properties: pluripotency and a high proliferative capacity. To realize this potential, development of efficient hPSC differentiation protocols is required. In this work, sex-based differences are identified in a GSK3 inhibitor based endothelial progenitor differentiation protocol. While male hPSCs efficiently differentiate into CD34 + CD31+ endothelial progenitors upon GSK3 inhibition, female hPSCs showed limited differentiation capacity using this protocol. Using VE-cadherin-GFP knockin reporter cells, female cells showed significantly increased differentiation efficiency when treated with VEGF during the second stage of endothelial progenitor differentiation. Interestingly, male cells showed no significant change in differentiation efficiency with VEGF treatment, but did show augmented early activation of VE-cadherin expression. A sex-based difference in endogenous expression of VEGF was identified that is likely the underlying cause of discrepancies in sex-dependent differentiation efficiency. These findings highlight the importance of sex differences in progenitor biology and the development of new stem cell differentiation protocols.


Assuntos
Diferenciação Celular , Células Progenitoras Endoteliais/citologia , Células-Tronco Pluripotentes/citologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Células Cultivadas , Células Progenitoras Endoteliais/efeitos dos fármacos , Células Progenitoras Endoteliais/metabolismo , Feminino , Humanos , Masculino , Compostos Organometálicos/farmacologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Fatores Sexuais
20.
Cell Stem Cell ; 24(5): 675-677, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31051127

RESUMO

In this issue of Cell Stem Cell, Zhang et al. (2019) describe a double-reporter iPSC line based on the expression of key cardiac transcription factors, TBX5 and NKX2.5, that delineates cardiac lineage specification in vitro and enables isolation of relatively pure chamber-specific cardiomyocytes, which are critical for drug screening, tissue engineering, and disease modeling.


Assuntos
Células-Tronco Embrionárias , Células-Tronco Pluripotentes Induzidas , Linhagem Celular , Coração , Humanos , Miócitos Cardíacos , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA