Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38758767

RESUMO

As the plasma beta (ß) increases in high-performance tokamaks, electromagnetic turbulence becomes more significant, potentially constraining their operational range. To investigate this turbulence, a cross-polarization scattering (CPS) diagnostic system is being developed on the HL-3 tokamak for simultaneous measurements of density and magnetic fluctuations. In this work, a quasi-optical system has been designed and analyzed for the Q-band CPS diagnostic. The system includes a lens group for beam waist size optimization, a rotatable wire-grid polarizer for polarization adjustment, and a reflector group for measurement range regulation and system response enhancement. Laboratory tests demonstrated a beam radius of order 4 cm at the target measurement location (near the plasma pedestal), cross-polarization isolation exceeding 30 dB, and poloidal and toroidal angle adjustment ranges of ±40° and ±15°, respectively. These results verify the system's feasibility through laboratory evaluations. The quasi-optical system has been installed on the HL-3 tokamak during the 2023 experimental campaign to support the development of CPS diagnostics.

2.
Rev Sci Instrum ; 94(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37668510

RESUMO

A 105 GHz collective Thomson scattering (CTS) diagnostic has been successfully developed for fast-ion measurements on the HL-2A tokamak, and it has been deployed during an experimental campaign. Enhanced signals exhibiting synchronous modulation characteristics have been observed across all CTS channels upon the launch of a modulated probe wave. Results show that the intensity of the CTS signal increases with Neutral Beam Injection (NBI) power and is proportional to neutron count, indicating that the scattering signal contains a contribution from fast ions. Compared with the signal without NBI, the enhanced scattering spectrum due to NBI is slightly wider than the predicted fast ion range. Such broadening might be attributed to the heating effects of the gyrotron.

3.
Sci Rep ; 13(1): 4785, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959269

RESUMO

The evolutions of MHD instability behaviors and enhancement of both electrostatic and electromagnetic turbulence towards the plasma disruption have been clearly observed in the HL-2A plasmas. Two types of plasma disruptive discharges have been investigated for similar equilibrium parameters: one with a distinct stage of a small central temperature collapse ([Formula: see text] 5-10%) around 1 millisecond before the thermal quench (TQ), while the other without. For both types, the TQ phase is preceded by a rotating 2/1 tearing mode, and it is the development of the cold bubble from the inner region of the 2/1 island O-point along with its inward convection that causes the massive energy loss. In addition, the micro-scale turbulence, including magnetic fluctuations and density fluctuations, increases before the small collapse, and more significantly towards the TQ. Also, temperature fluctuations measured by electron cyclotron emission imaging enhances dramatically at the reconnection site and expand into the island when approaching the small collapse and TQ, and the expansion is more significant close to the TQ. The observed turbulence enhancement near the X-point cannot be fully interpreted by the linear stability analysis by GENE. Evidences suggest that nonlinear effects, such as the reduction of local [Formula: see text] shear and turbulence spreading, may play an important role in governing turbulence enhancement and expansion. These results imply that the turbulence and its interaction with the island facilitate the stochasticity of the magnetic flux and formation of the cold bubble, and hence, the plasma disruption.

4.
Rev Sci Instrum ; 92(6): 063513, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243534

RESUMO

Remote control of the diagnostic systems is the basic requirement for the high performance plasma operation in a fusion device. This work presents the development of the remote control system for the multichannel Doppler backward scattering (DBS) reflectometers. It includes a remote controlled quasi-optical system and a remote intermediate frequency (IF) amplifier gain control system. The quasi-optical system contains a rotational polarizer, its polarization angle is tunable through a remote controlled motor, and it could combine the microwave beams with a wide frequency range into one focused beam. The remote IF gain control system utilizes the digital microcontroller (MCU) technique to regulate the signal amplitude for each signal channel. The gain parameters of amplifiers are adjustable, and the feedback of working status in the IF system will be sent to MCU in real time for safe operation. The gain parameters could be controlled either by the Ethernet remote way or directly through the local control interface on the system. Preliminary experimental results show the effectiveness of the remote controlled multichannel DBS system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA