RESUMO
Selenium is an essential micronutrient element. For the extremely biotoxic of selenite, Selenium nanoparticles (SeNPs) is gaining increasing interest. In this work, a selenium-enriched strain with highly selenite-resistant (up to 173 mmol/L) was isolated from the local specialty food of longevity area and identified as Paenibacillus motobuensis (P. motobuensis) LY5201. Most of the SeNPs were accumulated extracellular. SeNPs were around spherical with a diameter of approximately 100 nm. The X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy showed that the purified SeNPs consisted of selenium and proteins. Our results suggested that P. motobuensis LY5201could be a suitable and robust biocatalyst for SeNPs synthesis. In addition, the cytotoxicity effect and the anti-invasive activity of SeNPs on the HepG2 showed an inhibitory effect on HepG2, indicating that SeNPs could be used as a potential anticancer drug.