Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 199: 107716, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37116226

RESUMO

Calcineurin B-like proteins (CBLs) as specific calcium sensors that interact with CBL-interacting protein kinases (CIPKs) play a key role in the regulation of plant development and abiotic stress tolerance. In this study, we isolated and characterized the CIPK32 gene from Zea mays. ZmCIPK32 showed that it comprised 440 amino acids and a conserved NAF motif responsible for the interaction with CBLs localized in the cytoplasm and cell membrane. The interaction of ZmCIPK32 with ZmCBL1 and ZmCBL9 demonstrated using yeast two-hybrid system and bimolecular fluorescence complementation assay required the presence of the NAF domain. Overexpression of ZmCIPK32 promoted early germination in transgenic Arabidopsis seeds relative to that observed in wild-type (WT) plants under mannitol treatment. In addition, ZmCIPK32-overexpressing plants were insensitive to treatments with exogenous abscisic acid and paclobutrazol (PBZ) at seed germination and early seedling stages. Expression levels of the key genes GA20ox and GA3ox involved in the synthesis of gibberellin (GA) were increased, whereas expression levels of genes involved in the conversion of active GA to inactive forms and GA signaling were reduced in ZmCIPK32-overexpressing plants relative to those in WT plants under mannitol and PBZ treatments. Furthermore, overexpression of ZmCIPK32 increased GA level but decreased abscisic acid level in transgenic lines compared to the respective levels in WT plants under PBZ or mannitol treatments. Our results suggest that ZmCIPK32 positively regulates seed germination under stressed conditions by modulating GA signals.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Giberelinas/farmacologia , Giberelinas/metabolismo , Germinação , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Sementes/metabolismo , Proteínas de Arabidopsis/genética , Manitol/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
2.
J Nanobiotechnology ; 20(1): 15, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983547

RESUMO

BACKGROUND: Various environmental factors are capable of oxidative stress to result in limiting plant development and agricultural production. Fullerene-based carbon nanomaterials can enable radical scavenging and positively regulate plant growth. Even so, to date, our knowledge about the mechanism of fullerene-based carbon nanomaterials on plant growth and response to oxidative stress is still unclear. RESULTS: 20 or 50 mg/L quaternary ammonium iminofullerenes (IFQA) rescued the reduction in root lengths and root-hair densities and lengths of Arabidopsis and maize induced by accumulation of endogenous hydrogen peroxide (H2O2) under 3-amino-1,2,4-triazole or exogenous H2O2 treatment, as well as the root active absorption area and root activity under exogenous H2O2 treatment. Meanwhile, the downregulated contents of ascorbate acid (ASA) and glutathione (GSH) and the upregulated contents of dehydroascorbic acid (DHA), oxidized glutathione (GSSG), malondialdehyde (MDA), and H2O2 indicated that the exogenous H2O2 treatment induced oxidative stress of maize. Nonetheless, application of IFQA can increase the ratios of ASA/DHA and GSH/GSSG, as well as the activities of glutathione reductase, and ascorbate peroxidase, and decrease the contents of H2O2 and MDA. Moreover, the root lengths were inhibited by buthionine sulfoximine, a specific inhibitor of GSH biosynthesis, and subsequently rescued after addition of IFQA. The results suggested that IFQA could alleviate exogenous-H2O2-induced oxidative stress on maize by regulating the ASA-GSH cycle. Furthermore, IFQA reduced the excess accumulation of ROS in root hairs, as well as the NADPH oxidase activity under H2O2 treatment. The transcript levels of genes affecting ROS-mediated root-hair development, such as RBOH B, RBOH C, PFT1, and PRX59, were significantly induced by H2O2 treatment and then decreased after addition of IFQA. CONCLUSION: The positive effect of fullerene-based carbon nanomaterials on maize-root-hair growth under the induced oxidative stress was discovered. Application IFQA can ameliorate oxidative stress to promote maize-root growth through decreasing NADPH-oxidase activity, improving the scavenging of ROS by ASA-GSH cycle, and regulating the expressions of genes affecting maize-root-hair development. It will enrich more understanding the actual mechanism of fullerene-based nanoelicitors responsible for plant growth promotion and protection from oxidative stress.


Assuntos
Fulerenos , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Compostos de Amônio Quaternário , Zea mays/efeitos dos fármacos , Ácido Ascórbico/metabolismo , Fulerenos/química , Fulerenos/farmacologia , Glutationa/metabolismo , Homeostase/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Oxirredução/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA