RESUMO
Plasmid-mediated conjugative transfer of antibiotic resistance genes (ARGs) within the human and animal intestine represents a substantial global health concern. linoleic acid (LA) has shown promise in inhibiting conjugation in vitro, but its in vivo effectiveness in the mammalian intestinal tract is constrained by challenges in efficiently reaching the target site. Recent advancements have led to the development of waterborne polyurethane nanoparticles for improved drug delivery. In this study, we synthesized four waterborne polyurethane nanoparticles incorporating LA (WPU@LA) using primary raw materials, including N-methyldiethanolamine, 2,2'-(piperazine-1,4-diyl) diethanol, isophorone diisocyanate, castor oil, and acetic acid. These nanoparticles, identified as WPU0.89@LA, WPU0.99@LA, WPU1.09@LA, and WPU1.19@LA, underwent assessment for their pH-responsive release property and biocompatibility. Among these, WPU0.99@LA displayed superior pH-responsive release properties and biocompatibility towards Caco-2 and IPEC-J2 cells. In a mouse model, a dosage of 10 mg/kg/day WPU0.99@LA effectively reduced the conjugation of IncX4 plasmids carrying the mobile colistin resistance gene (mcr-1) by more than 45.1-fold. In vivo toxicity assessment demonstrated that 10 mg/kg/day WPU0.99@LA maintains desirable biosafety and effectively preserves gut microbiota homeostasis. In conclusion, our study provides crucial proof-of-concept support, demonstrating that WPU0.99@LA holds significant potential in controlling the spread of antibiotic resistance within the mammalian intestine.
RESUMO
View synthesis methods using implicit continuous shape representations learned from a set of images, such as the Neural Radiance Field (NeRF) method, have gained increasing attention due to their high quality imagery and scalability to high resolution. However, the heavy computation required by its volumetric approach prevents NeRF from being useful in practice; minutes are taken to render a single image of a few megapixels. Now, an image of a scene can be rendered in a level-of-detail manner, so we posit that a complicated region of the scene should be represented by a large neural network while a small neural network is capable of encoding a simple region, enabling a balance between efficiency and quality. Recursive-NeRF is our embodiment of this idea, providing an efficient and adaptive rendering and training approach for NeRF. The core of Recursive-NeRF learns uncertainties for query coordinates, representing the quality of the predicted color and volumetric intensity at each level. Only query coordinates with high uncertainties are forwarded to the next level to a bigger neural network with a more powerful representational capability. The final rendered image is a composition of results from neural networks of all levels. Our evaluation on public datasets and a large-scale scene dataset we collected shows that Recursive-NeRF is more efficient than NeRF while providing state-of-the-art quality. The code will be available at https://github.com/Gword/Recursive-NeRF.
RESUMO
Targeted antibiotic delivery system would be an ideal solution for the treatment of enteropathogenic infections since it avoids the excessive usage of antibiotics clinically, which may lead to threat on public health and food safety. Salmonella spp. are Enteropathogens, but they are also robust H2S producers in the intestinal tracts of hosts. To this end, the PEGylated poly (α lipoic acid) (PEG-PALA) copolymer nanoparticles with hydrophilic exterior and hydrophobic interior were designated in this study to encapsulate the antibiotics and release them in response to H2S produced by Salmonella spp. The PEG-PALA nanoparticles demonstrated excellent stability in vitro and biocompatibility toward mammalian Caco-2 and 293 T cells. The release of ciprofloxacin from PEG-PALA nanoparticle was only 25.44 ± 0.57% and 26.98 ± 1.93% (w/w) in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) solutions without H2S stimulation. However, the release amounts of ciprofloxacin were up to 73.68 ± 1.63% (w/w) in the presence of 1 mM Na2S as H2S source. In the mouse infection model, PEG-PALA nanoparticles encapsulated with ciprofloxacin (PEG-PALA@CIP) reduced the Salmonella colonization in the heart, liver, spleen, lung, cecum, and faeces, prolonged ciprofloxacin persistence in the intestine while reducing its absorption into the blood. More importantly, these nanoparticles reduced 3.4-fold of Enterobacteriaceae levels and increased 1.5-fold of the Lactobacillaceae levels compared with the drug administered in the free form. Moreover, these nanoparticles resulted in only minimal signs of intestinal tract inflammation. The H2S-responsive antibiotic delivery systems reported in this study demonstrating a variety of advantages including protected the drug from deactivation by gastric and intestinal fluids, maintained a high concentration in the intestinal tract and maximally kept the gut microbiota homeostasis. As such, this targeted antibiotic delivery systems are for the encapsulation of antibiotics to target specific enteropathogens.
Assuntos
Nanopartículas , Ácido Tióctico , Humanos , Camundongos , Animais , Ciprofloxacina/química , Células CACO-2 , Nanopartículas/química , Salmonella , Antibacterianos/química , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos , MamíferosRESUMO
Recently, the proposed deep multilayer perceptron (MLP) models have stirred up a lot of interest in the vision community. Historically, the availability of larger datasets combined with increased computing capacity led to paradigm shifts. This review provides detailed discussions on whether MLPs can be a new paradigm for computer vision. We compare the intrinsic connections and differences between convolution, self-attention mechanism, and token-mixing MLP in detail. Advantages and limitations of token-mixing MLP are provided, followed by careful analysis of recent MLP-like variants, from module design to network architecture, and their applications. In the graphics processing unit era, the locally and globally weighted summations are the current mainstreams, represented by the convolution and self-attention mechanism, as well as MLPs. We suggest the further development of the paradigm to be considered alongside the next-generation computing devices.
RESUMO
The FDA granted accelerated approval for pralsetinib on September 4, 2020 for non-small cell lung cancer (NSCLC) and December 1, 2020 for thyroid cancer, for: (i) adult patients with metastatic RET fusion-positive NSCLC, (ii) adult and pediatric patients ≥12 years of age with advanced or metastatic RET-mutant medullary thyroid cancer who require systemic therapy, and (iii) adult and pediatric patients ≥12 years of age with advanced or metastatic RET fusion-positive thyroid cancer who require systemic therapy and who are radioactive iodine refractory (if radioactive iodine is appropriate). Approval was based on the results of a multicenter, open-label, multi-cohort clinical trial (ARROW, NCT03037385), demonstrating substantial overall response rates (ORR) and durable responses in patients with RET-altered tumors. ORRs within the approved patient populations ranged from 57% [95% confidence interval (CI), 46-68] in patients with RET fusion-positive NSCLC previously treated with platinum chemotherapy to 89% (95% CI, 52-100) in patients with RET fusion-positive thyroid cancer, with response duration of at least 6 months in most responders. The product label includes warnings and precautions for pneumonitis, hypertension, hepatotoxicity, hemorrhagic events, tumor lysis syndrome, risk of impaired wound healing, and embryo-fetal toxicity. This article summarizes the major considerations during FDA review leading to the approval of pralsetinib.
Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/genética , Aprovação de Drogas , Fusão Gênica , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Proteínas Proto-Oncogênicas c-ret/genética , Pirazóis/uso terapêutico , Piridinas/uso terapêutico , Pirimidinas/uso terapêutico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Humanos , Estados UnidosRESUMO
On May 8, 2020, the FDA granted accelerated approval to selpercatinib for (i) adult patients with metastatic RET fusion-positive non-small cell lung cancer (NSCLC), (ii) adult and pediatric patients ≥12 years of age with advanced or metastatic RET-mutant medullary thyroid cancer who require systemic therapy, and (iii) adult and pediatric patients ≥12 years of age with advanced or metastatic RET fusion-positive thyroid cancer who require systemic therapy and who are radioactive iodine refractory (if radioactive iodine is appropriate). Approval was granted on the basis of the clinically important effects on the overall response rate (ORR) with prolonged duration of responses observed in a multicenter, open-label, multicohort clinical trial (LIBRETTO-001, NCT03157128) in patients whose tumors had RET alterations. ORRs within the approved patient populations ranged from 64% [95% confidence interval (CI), 54-73] in prior platinum-treated RET fusion-positive NSCLC to 100% (95% CI, 63-100) in systemic therapy-naïve RET fusion-positive thyroid cancer, with the majority of responders across indications demonstrating responses of at least 6 months. The product label includes warnings and precautions for hepatotoxicity, hypertension, QT interval prolongation, hemorrhagic events, hypersensitivity, risk of impaired wound healing, and embryo-fetal toxicity. This is the first approval of a drug specifically for patients with RET alterations globally.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Pirazóis/administração & dosagem , Piridinas/administração & dosagem , Neoplasias da Glândula Tireoide/tratamento farmacológico , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Criança , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Aprovação de Drogas , Humanos , Neoplasias Pulmonares/genética , Estudos Multicêntricos como Assunto , Mutação , Proteínas de Fusão Oncogênica/genética , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-ret/genética , Pirazóis/efeitos adversos , Piridinas/efeitos adversos , Neoplasias da Glândula Tireoide/genética , Resultado do Tratamento , Estados Unidos , United States Food and Drug AdministrationRESUMO
Next-generation sequencing (NGS)-based HIV drug resistance (HIVDR) assays outperform conventional Sanger sequencing in scalability, sensitivity, and quantitative detection of minority resistance variants. Thus far, HIVDR assays have been applied primarily in research but rarely in clinical settings. One main obstacle is the lack of standardized validation and performance evaluation systems that allow regulatory agencies to benchmark and accredit new assays for clinical use. By revisiting the existing principles for molecular assay validation, here we propose a new validation and performance evaluation system that helps to both qualitatively and quantitatively assess the performance of an NGS-based HIVDR assay. To accomplish this, we constructed a 70-specimen proficiency test panel that includes plasmid mixtures at known ratios, viral RNA from infectious clones, and anonymized clinical specimens. We developed assessment criteria and benchmarks for NGS-based HIVDR assays and used these to assess data from five separate MiSeq runs performed in two experienced HIVDR laboratories. This proposed platform may help to pave the way for the standardization of NGS HIVDR assay validation and performance evaluation strategies for accreditation and quality assurance purposes in both research and clinical settings.
Assuntos
Farmacorresistência Viral , Infecções por HIV/virologia , HIV-1/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fármacos Anti-HIV/farmacologia , HIV-1/efeitos dos fármacos , HIV-1/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , RNA Viral/genéticaRESUMO
Development of HIV-1 drug resistance mutations (HDRMs) is one of the major reasons for the clinical failure of antiretroviral therapy. Treatment success rates can be improved by applying personalized anti-HIV regimens based on a patient's HDRM profile. However, the sensitivity and specificity of the HDRM profile is limited by the methods used for detection. Sanger-based sequencing technology has traditionally been used for determining HDRM profiles at the single nucleotide variant (SNV) level, but with a sensitivity of only ≥ 20% in the HIV population of a patient. Next Generation Sequencing (NGS) technologies offer greater detection sensitivity (~ 1%) and larger scope (hundreds of samples per run). However, NGS technologies produce reads that are too short to enable the detection of the physical linkages of individual SNVs across the haplotype of each HIV strain present. In this article, we demonstrate that the single-molecule long reads generated using the Third Generation Sequencer (TGS), PacBio RS II, along with the appropriate bioinformatics analysis method, can resolve the HDRM profile at a more advanced quasispecies level. The case studies on patients' HIV samples showed that the quasispecies view produced using the PacBio method offered greater detection sensitivity and was more comprehensive for understanding HDRM situations, which is complement to both Sanger and NGS technologies. In conclusion, the PacBio method, providing a promising new quasispecies level of HDRM profiling, may effect an important change in the field of HIV drug resistance research.
RESUMO
PacBio RS, a newly emerging third-generation DNA sequencing platform, is based on a real-time, single-molecule, nano-nitch sequencing technology that can generate very long reads (up to 20-kb) in contrast to the shorter reads produced by the first and second generation sequencing technologies. As a new platform, it is important to assess the sequencing error rate, as well as the quality control (QC) parameters associated with the PacBio sequence data. In this study, a mixture of 10 prior known, closely related DNA amplicons were sequenced using the PacBio RS sequencing platform. After aligning Circular Consensus Sequence (CCS) reads derived from the above sequencing experiment to the known reference sequences, we found that the median error rate was 2.5% without read QC, and improved to 1.3% with an SVM based multi-parameter QC method. In addition, a De Novo assembly was used as a downstream application to evaluate the effects of different QC approaches. This benchmark study indicates that even though CCS reads are post error-corrected it is still necessary to perform appropriate QC on CCS reads in order to produce successful downstream bioinformatics analytical results.
RESUMO
In eukaryotes, multiple genes encode histone proteins that package genomic deoxyribonucleic acid (DNA) and regulate its accessibility. Because of their positive charge, 'free' (non-chromatin associated) histones can bind non-specifically to the negatively charged DNA and affect its metabolism, including DNA repair. We have investigated the effect of altering histone dosage on DNA repair in budding yeast. An increase in histone gene dosage resulted in enhanced DNA damage sensitivity, whereas deletion of a H3-H4 gene pair resulted in reduced levels of free H3 and H4 concomitant with resistance to DNA damaging agents, even in mutants defective in the DNA damage checkpoint. Studies involving the repair of a HO endonuclease-mediated DNA double-strand break (DSB) at the MAT locus show enhanced repair efficiency by the homologous recombination (HR) pathway on a reduction in histone dosage. Cells with reduced histone dosage experience greater histone loss around a DSB, whereas the recruitment of HR factors is concomitantly enhanced. Further, free histones compete with the HR machinery for binding to DNA and associate with certain HR factors, potentially interfering with HR-mediated repair. Our findings may have important implications for DNA repair, genomic stability, carcinogenesis and aging in human cells that have dozens of histone genes.
Assuntos
Dosagem de Genes , Histonas/genética , Reparo de DNA por Recombinação , Cromatina/química , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Histonas/metabolismo , Recombinação Genética , Saccharomycetales/genética , Saccharomycetales/metabolismoRESUMO
The accumulation of excess histone proteins in cells has deleterious consequences such as genomic instability in the form of excessive chromosome loss, enhanced sensitivity to DNA damaging agents and cytotoxicity. Hence, the synthesis of histone proteins is tightly regulated at multiple steps and transcriptional as well as posttranscriptional regulation of histone proteins is well established. Additionally, we have recently demonstrated that histone protein levels are regulated posttranslationally by the DNA damage checkpoint kinase Rad53 and ubiquitin-proteasome dependent proteolysis in the budding yeast. However, the underlying mechanism/s via which excess histones exert their deleterious effects in vivo are not clear. Here we have investigated the mechanistic basis for the deleterious effects of excess histones in budding yeast. We find that the presence of excess histones saturates certain histone modifying enzymes, potentially interfering with their activities. Additionally, excess histones appear to bind non-specifically to DNA as well as RNA, which can adversely affect their metabolism. Microarray analysis revealed that upon overexpression of histone gene pairs, about 240 genes were either up or downregulated by 2-fold or more. Overall, we present evidence that excess histones are likely to mediate their cytotoxic effects via multiple mechanisms that are primarily dependent on inappropriate electrostatic interactions between the positively charged histones and diverse negatively charged molecules in the cell. Our findings help explain the basis for the existence of multiple distinct mechanisms that contribute to the tight control of histone protein levels in cells and highlight their importance in maintaining genomic stability and cell viability.
Assuntos
Cromatina/química , Cromatina/metabolismo , Histonas/genética , Proteínas de Saccharomyces cerevisiae/genética , DNA/genética , DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Instabilidade Genômica , Histonas/metabolismo , Análise em Microsséries , Conformação de Ácido Nucleico , Nucleossomos/química , Nucleossomos/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Eletricidade EstáticaRESUMO
The FACT complex participates in chromatin assembly and disassembly during transcription elongation. The yeast mutants affected in the SPT16 gene, which encodes one of the FACT subunits, alter the expression of G1 cyclins and exhibit defects in the G1/S transition. Here we show that the dysfunction of chromatin reassembly factors, like FACT or Spt6, down-regulates the expression of the gene encoding the cyclin that modulates the G1 length (CLN3) in START by specifically triggering the repression of its promoter. The G1 delay undergone by spt16 mutants is not mediated by the DNA-damage checkpoint, although the mutation of RAD53, which is otherwise involved in histone degradation, enhances the cell-cycle defects of spt16-197. We reveal how FACT dysfunction triggers an accumulation of free histones evicted from transcribed chromatin. This accumulation is enhanced in a rad53 background and leads to a delay in G1. Consistently, we show that the overexpression of histones in wild-type cells down-regulates CLN3 in START and causes a delay in G1. Our work shows that chromatin reassembly factors are essential players in controlling the free histones potentially released from transcribed chromatin and describes a new cell cycle phenomenon that allows cells to respond to excess histones before starting DNA replication.
Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/fisiologia , Fase G1/fisiologia , Proteínas de Grupo de Alta Mobilidade/fisiologia , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Fatores de Elongação da Transcrição/fisiologia , Northern Blotting , Imunoprecipitação da Cromatina , Ciclinas/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Fosforilação , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismoRESUMO
Transmembrane protein p185 (the product of Her2/c-erbB-2 gene) is a member of the epidermal growth factor receptor (EGFR) family. Its overexpression was found in about 30% of breast cancer. It is essential to obtain soluble extracellular domain (ECD) of p185, especially disulfide bond rich domains, for identifying the epitopes of anti-p185 antibodies and researching the interrelationship between the antigen and antibody. The disulfide bond rich domain I-II and domain IV of p185 ECD were amplified from plasmid pBabe/erbB-2 by PCR respectively. These two fragments were inserted into pGEX/4T-1 vector, transfected into E. coli Origami B (DE3) pLysS and expressed inductively by low concentration of IPTG and low temperature overnight. After the pressure lysis of cells, the supernatants were analyzed by SDS-PAGE and the result demonstrated that this GST-fusion protein was expressed solubly in the amount of 10-15 mg/L. By the ELISA, Western blot and other immunological assays, the fusion proteins and their GST cut-off derivates both showed binding activities with several anti-p185 antibodies respectively. These results indicated that it was a feasible and effectual method to express disulfide bond rich domain I-II and domain IV of p185 ECD and this method may also be used to express other disulfide bond rich proteins.