Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
1.
MedComm (2020) ; 5(7): e633, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38952575

RESUMO

cAMP responsive element binding protein 3 (CREB3), belonging to bZIP family, was reported to play multiple roles in various cancers, but its role in hepatocellular carcinoma (HCC) is still unclear. cAMP responsive element binding protein 3 like 3 (CREB3L3), another member of bZIP family, was thought to be transcription factor (TF) to regulate hepatic metabolism. Nevertheless, except for being TFs, other function of bZIP family were poorly understood. In this study, we found CREB3 inhibited growth and metastasis of HCC in vitro and in vivo. RNA sequencing indicated CREB3 regulated AKT signaling to influence HCC progression. Mass spectrometry analysis revealed CREB3 interacted with insulin receptor (INSR). Mechanistically, CREB3 suppressed AKT phosphorylation by inhibiting the interaction of INSR with insulin receptor substrate 1 (IRS1). In our study, CREB3 was firstly proved to affect activation of substrates by interacting with tyrosine kinase receptor. Besides, CREB3 could act as a TF to transactivate RNA-binding motif protein 38 (RBM38) expression, leading to suppressed AKT phosphorylation. Rescue experiments further confirmed the independence between the two functional manners. In conclusion, CREB3 acted as a tumor suppressor in HCC, which inhibited AKT phosphorylation through independently interfering interaction of INSR with IRS1, and transcriptionally activating RBM38.

2.
Front Oncol ; 14: 1407434, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962270

RESUMO

Hepatitis B infection is substantially associated with the development of liver cancer globally, with the prevalence of hepatocellular carcinoma (HCC) cases exceeding 50%. Hepatitis B virus (HBV) encodes the Hepatitis B virus X (HBx) protein, a pleiotropic regulatory protein necessary for the transcription of the HBV covalently closed circular DNA (cccDNA) microchromosome. In previous studies, HBV-associated HCC was revealed to be affected by HBx in multiple signaling pathways, resulting in genetic mutations and epigenetic modifications in proto-oncogenes and tumor suppressor genes. In addition, transforming growth factor-ß (TGF-ß) has dichotomous potentials at various phases of malignancy as it is a crucial signaling pathway that regulates multiple cellular and physiological processes. In early HCC, TGF-ß has a significant antitumor effect, whereas in advanced HCC, it promotes malignant progression. TGF-ß interacts with the HBx protein in HCC, regulating the pathogenesis of HCC. This review summarizes the respective and combined functions of HBx and TGB-ß in HCC occurrence and development.

3.
Cell Biol Int ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38884348

RESUMO

ErbB3-binding protein 1(Ebp1) has two isoforms, p42 Ebp1 and p48 Ebp1, both of which can regulate cell growth and differentiation. But these isoforms often have opposite effects, including contradictory roles in regulation of cell growth in different tissues and cells. P48 Ebp1 belongs to the full-length sequence, while conformational changes in the crystal structure of p42 Ebp1 reveals a lack of an α helix at the amino terminus. Due to the differences in the structures of these two isoforms, they have different binding partners and protein modifications. Ebp1 can function as both an oncogene and a tumor suppressor factor. However, the underlying mechanisms by which these two isoforms exert opposite functions are still not fully understood. In this review, we summarize the genes and the structures of protein of these two isoforms, protein modifications, binding partners and the association of different isoforms with diseases.

4.
Cell Death Differ ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918619

RESUMO

Hepatocellular carcinoma (HCC) is a highly heterogeneous solid tumor, with its biological characteristics intricately linked to the activation of oncogenes. This research specifically explored CCDC137, a molecule within the CCDC family exhibiting the closest association with HCC. Our investigation aimed to unravel the role, underlying mechanisms, and potential therapeutic implications of CCDC137 in the context of HCC. We observed a close correlation between elevated CCDC137 expression and poor prognosis in HCC patients, along with a promotive effect on HCC progression in vitro and in vivo. Mechanistically, we identified LZTS2, a negative regulator of ß-catenin, as the binding protein of CCDC137. CCDC137 facilitated K48-linked poly-ubiquitination of LZTS2 at lysine 467 via recruiting E3 ubiquitin ligase ß-TrCP in the nucleus, triggering AKT phosphorylation and activation of ß-catenin pathway. Moreover, the 1-75 domain of CCDC137 was responsible for the formation of the CCDC137-LZTS2-ß-TrCP complex. Subsequently, designed peptides targeting the 1-75 domain of CCDC137 to disrupt CCDC137-LZTS2 interaction demonstrated efficacy in inhibiting HCC progression. This promising outcome was further supported by HCC organoids and patient-derived xenograft (PDX) models, underscoring the potential clinical utility of the peptides. This study elucidated the mechanism of the CCDC137-LZTS2-ß-TrCP protein complex in HCC and offered clinically significant therapeutic strategies targeting this complex.

5.
Front Med ; 18(3): 538-557, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38769281

RESUMO

Schistosoma infection is one of the major causes of liver fibrosis. Emerging roles of hepatic progenitor cells (HPCs) in the pathogenesis of liver fibrosis have been identified. Nevertheless, the precise mechanism underlying the role of HPCs in liver fibrosis in schistosomiasis remains unclear. This study examined how autophagy in HPCs affects schistosomiasis-induced liver fibrosis by modulating exosomal miRNAs. The activation of HPCs was verified by immunohistochemistry (IHC) and immunofluorescence (IF) staining in fibrotic liver from patients and mice with Schistosoma japonicum infection. By coculturing HPCs with hepatic stellate cells (HSCs) and assessing the autophagy level in HPCs by proteomic analysis and in vitro phenotypic assays, we found that impaired autophagy degradation in these activated HPCs was mediated by lysosomal dysfunction. Blocking autophagy by the autophagy inhibitor chloroquine (CQ) significantly diminished liver fibrosis and granuloma formation in S. japonicum-infected mice. HPC-secreted extracellular vehicles (EVs) were further isolated and studied by miRNA sequencing. miR-1306-3p, miR-493-3p, and miR-34a-5p were identified, and their distribution into EVs was inhibited due to impaired autophagy in HPCs, which contributed to suppressing HSC activation. In conclusion, we showed that the altered autophagy process upon HPC activation may prevent liver fibrosis by modulating exosomal miRNA release and inhibiting HSC activation in schistosomiasis. Targeting the autophagy degradation process may be a therapeutic strategy for liver fibrosis during Schistosoma infection.


Assuntos
Autofagia , Exossomos , Cirrose Hepática , MicroRNAs , Células-Tronco , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/parasitologia , Camundongos , Humanos , Exossomos/metabolismo , Células-Tronco/metabolismo , Células Estreladas do Fígado/metabolismo , Esquistossomose Japônica/metabolismo , Masculino , Schistosoma japonicum/genética , Feminino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Esquistossomose/complicações , Fígado/patologia , Fígado/metabolismo , Fígado/parasitologia
6.
Br J Dermatol ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752336

RESUMO

BACKGROUND: Psoriasis is a prevalent chronic inflammatory dermatosis characterized by excessive proliferation of keratinocytes. Protein lysine 2-hydroxyisobutyrylation (Khib) is a newly identified post-translational modification that regulates various biological processes. Abnormal Khib modification has been closely associated with the development of autoimmune diseases. OBJECTIVE: To investigate the abnormal Khib profile and its pathogenic role in psoriasis. METHODS: We utilized liquid chromatography-tandem mass spectrometry to analyze Khib-modified proteins in the epidermis of psoriasis and healthy controls. Mutated cells and mice with downregulated Ebp1Khib210 were generated to investigate its functional effects in psoriasis. RESULTS: The omic analysis revealed dysregulation of Khib modification in psoriatic lesions, exhibiting a distinct profile compared to controls. We observed the downregulation of Ebp1Khib210 in psoriatic lesions and IMQ-induced psoriatic mice. Notably, the expression of Ebp1Khib210 was upregulated in psoriatic patients following effective treatment. Decreased Ebp1Khib210 enhanced keratinocyte viability, proliferation, and survival while inhibiting apoptosis in vitro. Additionally, Pa2g4K210A mice with downregulated Ebp1Khib210 exhibited more severe psoriatic lesions and enhanced keratinocyte proliferation. Moreover, we found that Ebp1K210A mutation increased the interaction between Ebp1 and nuclear Akt, thereby inhibiting MDM2-mediated TIF-IA ubiquitination, and resulting to increased rRNA synthesis and keratinocyte proliferation. The downregulation of Ebp1Khib210 was attributed to inflammation-induced increases in HDAC2 expression. CONCLUSION: Our findings demonstrate that downregulation of Ebp1Khib210 promotes keratinocyte proliferation through modulation of Akt signaling and TIF-IA-mediated rRNA synthesis. These insights into Khib modification provide a better understanding of the pathogenesis of psoriasis and suggest potential therapeutic targets.

7.
MedComm (2020) ; 5(5): e535, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38741887

RESUMO

Cholangiocarcinoma (CCA) is characterized by rapid onset and high chance of metastasis. Therefore, identification of novel therapeutic targets is imperative. E26 transformation-specific homologous factor (EHF), a member of the E26 transformation-specific transcription factor family, plays a pivotal role in epithelial cell differentiation and cancer progression. However, its precise role in CCA remains unclear. In this study, through in vitro and in vivo experiments, we demonstrated that EHF plays a profound role in promoting CCA by transcriptional activation of glioma-associated oncogene homolog 1 (GLI1). Moreover, EHF significantly recruited and activated tumor-associated macrophages (TAMs) through the C-C motif chemokine 2/C-C chemokine receptor type 2 (CCL2/CCR2) axis, thereby remodeling the tumor microenvironment. In human CCA tissues, EHF expression was positively correlated with GLI1 and CCL2 expression, and patients with co-expression of EHF/GLI1 or EHF/CCL2 had the most adverse prognosis. Furthermore, the combination of the GLI1 inhibitor, GANT58, and CCR2 inhibitor, INCB3344, substantially reduced the occurrence of EHF-mediated CCA. In summary, our findings suggest that EHF is a potential prognostic biomarker for patients with CCA, while also advocating the therapeutic approach of combined targeting of GLI1 and CCL2/CCR2-TAMs to inhibit EHF-driven CCA development.

8.
Aging (Albany NY) ; 16(7): 6588-6612, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38604156

RESUMO

BACKGROUND: Liver progenitor cells (LPCs) are a subpopulation of cells that contribute to liver regeneration, fibrosis and liver cancer initiation under different circumstances. RESULTS: By performing adenoviral-mediated transfection, CCK-8 analyses, F-actin staining, transwell analyses, luciferase reporter analyses and Western blotting, we observed that TGF-ß promoted cytostasis and partial epithelial-mesenchymal transition (EMT) in LPCs. In addition, we confirmed that TGF-ß activated the Smad and MAPK pathways, including the Erk, JNK and p38 MAPK signaling pathways, and revealed that TGFß-Smad signaling induced growth inhibition and partial EMT, whereas TGFß-MAPK signaling had the opposite effects on LPCs. We further found that the activity of Smad and MAPK signaling downstream of TGF-ß was mutually restricted in LPCs. Mechanistically, we found that TGF-ß activated Smad signaling through serine phosphorylation of both the C-terminal and linker regions of Smad2 and 3 in LPCs. Additionally, TGFß-MAPK signaling inhibited the phosphorylation of Smad3 but not Smad2 at the C-terminus, and it reinforced the linker phosphorylation of Smad3 at T179 and S213. We then found that overexpression of mutated Smad3 at linker phosphorylation sites intensifies TGF-ß-induced cytostasis and EMT, mimicking the effects of MAPK inhibition in LPCs, whereas mutation of Smad3 at the C-terminus caused LPCs to blunt TGF-ß-induced cytostasis and partial EMT. CONCLUSION: These results suggested that TGF-ß downstream of Smad3 and MAPK signaling were mutually antagonistic in regulating the viability and partial EMT of LPCs. This antagonism may help LPCs overcome the cytostatic effect of TGF-ß under fibrotic conditions and maintain partial EMT and progenitor phenotypes.


Assuntos
Transição Epitelial-Mesenquimal , Fígado , Sistema de Sinalização das MAP Quinases , Proteína Smad3 , Células-Tronco , Fator de Crescimento Transformador beta , Proteína Smad3/metabolismo , Células-Tronco/metabolismo , Animais , Fator de Crescimento Transformador beta/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Fígado/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Fosforilação , Camundongos , Transdução de Sinais
9.
Biomed Pharmacother ; 173: 116366, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458013

RESUMO

Hepatocellular carcinoma (HCC) has a poor prognosis, and the efficacy of current therapeutic strategies is extremely limited in advanced diseases. Our previous study reported that protein tyrosine phosphatase receptor epsilon (PTPRE) is a promoting factor in HCC progression. In this study, our objective was to evaluate the treatment effect of PTPRE inhibitors in different HCC preclinical models. Our results indicated that the PTPRE inhibitory compound 63 (Cpd-63) inhibited tumor cell proliferation, migration, and HCC organoid growth. Mechanism research revealed that Cpd-63 could inhibit the expression of MYC and MYC targets by inhibiting the activation of SRC. Additionally, we found that Cpd-63 could improve the response of sorafenib in HCC cells. In conclusion, we demonstrated that the PTPRE inhibitors represented a potential therapeutic agent for HCC management.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Carcinoma Hepatocelular/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos
10.
Clin Transl Med ; 14(2): e1529, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38303609

RESUMO

OBJECTIVE: Our study was to elucidate the role of RNA helicase DEAD-Box Helicase 17 (DDX17) in NAFLD and to explore its underlying mechanisms. METHODS: We created hepatocyte-specific Ddx17-deficient mice aim to investigate the impact of Ddx17 on NAFLD induced by a high-fat diet (HFD) as well as methionine and choline-deficient l-amino acid diet (MCD) in adult male mice. RNA-seq and lipidomic analyses were conducted to depict the metabolic landscape, and CUT&Tag combined with chromatin immunoprecipitation (ChIP) and luciferase reporter assays were conducted. RESULTS: In this work, we observed a notable increase in DDX17 expression in the livers of patients with NASH and in murine models of NASH induced by HFD or MCD. After introducing lentiviruses into hepatocyte L02 for DDX17 knockdown or overexpression, we found that lipid accumulation induced by palmitic acid/oleic acid (PAOA) in L02 cells was noticeably weakened by DDX17 knockdown but augmented by DDX17 overexpression. Furthermore, hepatocyte-specific DDX17 knockout significantly alleviated hepatic steatosis, inflammatory response and fibrosis in mice after the administration of MCD and HFD. Mechanistically, our analysis of RNA-seq and CUT&Tag results combined with ChIP and luciferase reporter assays indicated that DDX17 transcriptionally represses Cyp2c29 gene expression by cooperating with CCCTC binding factor (CTCF) and DEAD-Box Helicase 5 (DDX5). Using absolute quantitative lipidomics analysis, we identified a hepatocyte-specific DDX17 deficiency that decreased lipid accumulation and altered lipid composition in the livers of mice after MCD administration. Based on the RNA-seq analysis, our findings suggest that DDX17 could potentially have an impact on the modulation of lipid metabolism and the activation of M1 macrophages in murine NASH models. CONCLUSION: These results imply that DDX17 is involved in NASH development by promoting lipid accumulation in hepatocytes, inducing the activation of M1 macrophages, subsequent inflammatory responses and fibrosis through the transcriptional repression of Cyp2c29 in mice. Therefore, DDX17 holds promise as a potential drug target for the treatment of NASH.


Assuntos
Transtornos do Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Masculino , Camundongos , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fibrose , Expressão Gênica , Metabolismo dos Lipídeos/genética , Transtornos do Metabolismo dos Lipídeos/genética , Lipídeos , Luciferases/metabolismo , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Progressão da Doença
11.
Aging (Albany NY) ; 16(5): 4396-4422, 2024 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-38407980

RESUMO

Proper preclinical models for the research of colorectal cancer (CRC) and CRC liver metastases (CLM) are a clear and unmet need. Patient-derived organoids have recently emerged as a robust preclinical model, but are not available to all scientific researchers. Here, we present paired 3D organoid cell lines of CWH22 (CRC-derived) and CLM22 (CLM-derived) with sound background information and the short tandem repeats are identical to those of the normal tissue. Morphological and immunohistochemical staining, along with whole-exome sequencing (WES), confirmed that the organoids exhibited the same differentiation, molecular expression, and mutation status as the corresponding tumor tissue. Both organoids possessed mutated APC/KRAS/SMAD4/CDKN1B/KMT2C genes and wild-type TP53 and PIK3CA; stably secreted the tumor markers CEA and CA19-9, and possessed sound proliferation rates in vitro, as well as subcutaneous tumorigenicity and liver metastatic abilities in vivo. IC50 assays confirmed that both cell lines were sensitive to 5-fluorouracil, oxaliplatin, SN-38, and sotorasib. WES and karyotype analyses revealed the genomic instability status as chromosome instability. The corresponding adherent cultured CWH22-2D/CLM22-2D cells were established and compared with commonly used CRC cell lines from the ATCC. Both organoids are publicly available to all researchers and will be useful tools for specific human CRC/CLM studies both in vitro and in vivo.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Oxaliplatina , Neoplasias Hepáticas/patologia , Organoides/patologia , Linhagem Celular
12.
Cancer Lett ; 585: 216674, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38280480

RESUMO

Metastasis is the main culprit of cancer-related death and account for the poor prognosis of hepatocellular carcinoma. Although platelets have been shown to accelerate tumor cell metastasis, the exact mechanism remained to be fully understood. Here, we found that high blood platelet counts and increased tumor tissue ADAM10 expression indicated the poor prognosis of HCC patients. Meanwhile, blood platelet count has positive correlation with tumor tissue ADAM10 expression. In vitro, we revealed that platelet increased ADAM10 expression in tumor cell through TLR4/NF-κB signaling pathway. ADAM10 catalyzed the shedding of CX3CL1 which bound to CX3CR1 receptor, followed by inducing epithelial to mesenchymal transition and activating RhoA signaling in cancer cells. Moreover, knockdown HCC cell TLR4 (Tlr4) or inhibition of ADAM10 prevented platelet-increased tumor cell migration, invasion and endothelial permeability. In vivo, we further verified in mice lung metastatic model that platelet accelerated tumor metastasis via cancer cell TLR4/ADAM10/CX3CL1 axis. Overall, our study provides new insights into the underlying mechanism of platelet-induced HCC metastasis. Therefore, targeting the TLR4/ADAM10/CX3CL1 axis in cancer cells hold promise for the inhibition of platelet-promoted lung metastasis of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/patologia , Receptor 4 Toll-Like/metabolismo , Neoplasias Hepáticas/patologia , Transição Epitelial-Mesenquimal , Transdução de Sinais , Proteína ADAM10/metabolismo , Movimento Celular , Linhagem Celular Tumoral , Metástase Neoplásica , Proteínas de Membrana/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Quimiocina CX3CL1
13.
Adv Sci (Weinh) ; 11(13): e2307242, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38247171

RESUMO

N6-methyladenosine (m6A) modification orchestrates cancer formation and progression by affecting the tumor microenvironment (TME). For hepatocellular carcinoma (HCC), immune evasion and angiogenesis are characteristic features of its TME. The role of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), as an m6A reader, in regulating HCC TME are not fully understood. Herein, it is discovered that trimethylated histone H3 lysine 4 and H3 lysine 27 acetylation modification in the promoter region of YTHDF2 enhanced its expression in HCC, and upregulated YTHDF2 in HCC predicted a worse prognosis. Animal experiments demonstrated that Ythdf2 depletion inhibited spontaneous HCC formation, while its overexpression promoted xenografted HCC progression. Mechanistically, YTHDF2 recognized the m6A modification in the 5'-untranslational region of ETS variant transcription factor 5 (ETV5) mRNA and recruited eukaryotic translation initiation factor 3 subunit B to facilitate its translation. Elevated ETV5 expression induced the transcription of programmed death ligand-1 and vascular endothelial growth factor A, thereby promoting HCC immune evasion and angiogenesis. Targeting YTHDF2 via small interference RNA-containing aptamer/liposomes successfully both inhibited HCC immune evasion and angiogenesis. Together, this findings reveal the potential application of YTHDF2 in HCC prognosis and targeted treatment.


Assuntos
Aptâmeros de Nucleotídeos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas de Ligação a RNA , Animais , Angiogênese , Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Evasão da Resposta Imune , Neoplasias Hepáticas/genética , Lisina , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a DNA/metabolismo
14.
Transl Oncol ; 41: 101882, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38290247

RESUMO

ABCC1 belongs to the ATP-binding cassette (ABC) superfamily, which encompasses a total of 48 constituent members. ABCC1 has been shown to be associated with the growth, progression, and drug resistance of various types of cancer. However, the impact of ABCC1 on cancer immune infiltration and pan-cancer prognosis has been rarely studied. Our comprehensive pan-cancer analysis unveiled elevated ABCC1 expression across various cancers. ABCC1 overexpression consistently predicted unfavorable outcomes based on TCGA data. Moreover, ABCC1 expression exhibited intricate associations with diverse immune-related genes and demonstrated a close correlation with immune scores across multiple tumor types. Analysis of scRNA-seq data from the GEO database revealed that the expression of ABCC1 in hepatocellular carcinoma (HCC) cells is significant positively correlated with macrophage infiltration. Furthermore, various in vitro and in vivo experiments substantiated the role of ABCC1 in promoting the progression of HCC, along with increased macrophage recruitment. Based on the results, we propose ABCC1 as a potentially valuable prognostic indicator and a prospective target for immune-based cancer therapies.

15.
Oncogene ; 43(2): 123-135, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37973952

RESUMO

USP11 is a member of the ubiquitin-specific protease family and plays a crucial role in tumor progression in various cancers. However, the precise mechanism by which USP11 promotes EMT and metastasis in hepatocellular carcinoma (HCC) is not fully understood. In this study, we demonstrated that the USP11 expression was dramatically upregulated in HCC tissues and cell lines. Increased USP11 expression was closely associated with tumor number, vascular invasion, and poor prognosis. Functional experiments demonstrated that USP11 markedly promoted metastasis and EMT in HCC via induction of the transcription factor Snail. Mechanistically, USP11 interacted with and deubiquitinated eEF1A1 on Lys439, thereby inhibiting its ubiquitin-mediated degradation. Subsequently, the elevated expression of eEF1A1 resulted in its binding to SP1, which in turn drove the binding of SP1 to its target HGF gene promoter to increase its transcription. This led to an enhanced expression of HGF and the activation of the downstream PI3K/AKT signaling pathway. We demonstrated that USP11 promotes EMT and metastasis in HCC via eEF1A1/SP1/HGF dependent-EMT. Our findings suggest that the USP11/ eEF1A1/SP1/HGF axis contributes to metastasis in HCC, and therefore, could be considered as a potential therapeutic target for the treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Transição Epitelial-Mesenquimal/genética , Metástase Neoplásica , Tioléster Hidrolases/genética , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo
16.
Int Immunopharmacol ; 127: 111376, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38113691

RESUMO

BACKGROUND AND AIMS: RNA splicing is an essential step in regulating the gene posttranscriptional expression. Serine/arginine-rich splicing factors (SRSFs) are splicing regulators with vital roles in various tumors. Nevertheless, the expression patterns and functions of SRSFs in hepatocellular carcinoma (HCC) are not fully understood. METHODS: Flow cytometry and immunofluorescent staining were used to determine the CD8+T cell infiltration. Orthotopic HCC model, lung metastasis model, DEN/CCl4 model, Srsf10△hep model, and Srsf10HepOE model were established to evaluate the role of SRSF10 in HCC and the efficacy of combination treatment. RESULTS: SRSF10 was one of the most survival-relevant genes among SRSF members and was an independent prognostic factor for HCC. SRSF10 facilitated HCC growth and metastasis by suppressing CD8+T cell infiltration. Mechanistically, SRSF10 down-regulated the p53 protein by preventing the exon 6 skipping (exon 7 in mouse) mediated degradation of MDM4 transcript, thus inhibiting CD8+T cell infiltration. Elimination of CD8+T cells or overexpression of MDM4 removed the inhibitory role of SRSF10 knockdown in HCC growth and metastasis. SRSF10 also inhibited the IFNα/γ signaling pathway and promoted the HIF1α-mediated up-regulation of PD-L1 in HCC. Hepatocyte-specific SRSF10 deficiency alleviated the DEN/CCl4-induced HCC progression and metastasis, whereas hepatocyte-specific SRSF10 overexpression deteriorated these effects. Finally, SRSF10 knockdown enhanced the anti-PD-L1-mediated anti-tumor activity. CONCLUSIONS: SRSF10 promoted HCC growth and metastasis by repressing CD8+T cell infiltration mediated by the MDM4-p53 axis. Furthermore, SRSF10 suppressed the IFNα/γ signaling pathway and induced the HIF1α signal mediated PD-L1 up-regulation. Targeting SRSF10 combined with anti-PD-L1 therapy showed promising efficacy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Ciclo Celular/metabolismo
17.
Gut ; 73(6): 985-999, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38123979

RESUMO

OBJECTIVE: The gain of function (GOF) CTNNB1 mutations (CTNNB1 GOF ) in hepatocellular carcinoma (HCC) cause significant immune escape and resistance to anti-PD-1. Here, we aimed to investigate the mechanism of CTNNB1 GOF HCC-mediated immune escape and raise a new therapeutic strategy to enhance anti-PD-1 efficacy in HCC. DESIGN: RNA sequencing was performed to identify the key downstream genes of CTNNB1 GOF associated with immune escape. An in vitro coculture system, murine subcutaneous or orthotopic models, spontaneously tumourigenic models in conditional gene-knock-out mice and flow cytometry were used to explore the biological function of matrix metallopeptidase 9 (MMP9) in tumour progression and immune escape. Single-cell RNA sequencing and proteomics were used to gain insight into the underlying mechanisms of MMP9. RESULTS: MMP9 was significantly upregulated in CTNNB1 GOF HCC. MMP9 suppressed infiltration and cytotoxicity of CD8+ T cells, which was critical for CTNNB1 GOF to drive the suppressive tumour immune microenvironment (TIME) and anti-PD-1 resistance. Mechanistically, CTNNB1 GOF downregulated sirtuin 2 (SIRT2), resulting in promotion of ß-catenin/lysine demethylase 4D (KDM4D) complex formation that fostered the transcriptional activation of MMP9. The secretion of MMP9 from HCC mediated slingshot protein phosphatase 1 (SSH1) shedding from CD8+ T cells, leading to the inhibition of C-X-C motif chemokine receptor 3 (CXCR3)-mediated intracellular of G protein-coupled receptors signalling. Additionally, MMP9 blockade remodelled the TIME and potentiated the sensitivity of anti-PD-1 therapy in HCC. CONCLUSIONS: CTNNB1 GOF induces a suppressive TIME by activating secretion of MMP9. Targeting MMP9 reshapes TIME and potentiates anti-PD-1 efficacy in CTNNB1 GOF HCC.


Assuntos
Linfócitos T CD8-Positivos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Metaloproteinase 9 da Matriz , beta Catenina , beta Catenina/metabolismo , beta Catenina/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Animais , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Camundongos , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Linfócitos T CD8-Positivos/imunologia , Humanos , Mutação , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Evasão Tumoral/genética , Evasão Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Linhagem Celular Tumoral
18.
J Am Acad Dermatol ; 90(5): 935-944, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38147900

RESUMO

BACKGROUND: Certain immune-mediated inflammatory diseases (IMIDs) may increase patients' risk for venous thromboembolisms (VTEs), yet how atopic dermatitis (AD) influences VTE risk remains unclear. OBJECTIVE: Describe VTE incidence in patients with AD compared with other IMIDs and unaffected, AD-matched controls. METHODS: This retrospective, observational, comparative cohort study used Optum Clinformatics United States claims data (2010-2019) of adults with AD, rheumatoid arthritis (RA), Crohn's disease (CD), ulcerative colitis (UC), psoriasis (PsO), psoriatic arthritis (PsA), or ankylosing spondylitis (AS). Unaffected control patients were matched 1:1 with patients with AD. RESULTS: Of 2,061,222 patients with IMIDs, 1,098,633 had AD. Patients with AD had a higher VTE incidence (95% CI) than did unaffected, AD-matched controls (0.73 [0.72-0.74] versus 0.59 [0.58-0.60] cases/100 person-years). When controlling for baseline VTE risk factors, however, AD was not associated with increased VTE risk (HR 0.96 [0.90-1.02]). VTE risk was lower in patients with AD versus RA, UC, CD, AS, or PsA; VTE risk was similar to patients with PsO. LIMITATIONS: Disease activity and severity were not accounted for. CONCLUSION: AD did not increase VTE risk when accounting for underlying risk factors. AD was associated with lower VTE risk compared with several rheumatologic and gastrointestinal IMIDs.


Assuntos
Artrite Psoriásica , Artrite Reumatoide , Colite Ulcerativa , Doença de Crohn , Dermatite Atópica , Psoríase , Espondilite Anquilosante , Tromboembolia Venosa , Adulto , Humanos , Artrite Psoriásica/complicações , Artrite Psoriásica/epidemiologia , Artrite Reumatoide/complicações , Estudos de Coortes , Doença de Crohn/complicações , Doença de Crohn/epidemiologia , Dermatite Atópica/epidemiologia , Dermatite Atópica/complicações , Agentes de Imunomodulação , Psoríase/complicações , Estudos Retrospectivos , Fatores de Risco , Estados Unidos/epidemiologia , Tromboembolia Venosa/epidemiologia , Tromboembolia Venosa/etiologia
19.
NAR Cancer ; 5(4): zcad053, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38023732

RESUMO

Altered promoter activity has been generally observed in diverse biological processes, including tumorigenesis. Accumulating evidence suggests that employing a quantitative trait locus mapping approach is effective in comprehending the genetic basis of promoter activity. By utilizing genotype data from The Cancer Genome Atlas and calculating corresponding promoter activity values using proActiv, we systematically evaluated the impact of genetic variants on promoter activity and identified >1.0 million promoter activity quantitative trait loci (paQTLs) as both cis- and trans-acting. Additionally, leveraging data from the genome-wide association study (GWAS) catalog, we discovered >1.3 million paQTLs that overlap with known GWAS linkage disequilibrium regions. Remarkably, ∼9324 paQTLs exhibited significant associations with patient prognosis. Moreover, investigating the impact of promoter activity on >1000 imputed antitumor therapy responses among pan-cancer patients revealed >43 000 million significant associations. Furthermore, ∼25 000 significant associations were identified between promoter activity and immune cell abundance. Finally, a user-friendly data portal, Pancan-paQTL (https://www.hbpding.com/PancanPaQTL/), was constructed for users to browse, search and download data of interest. Pancan-paQTL serves as a comprehensive multidimensional database, enabling functional and clinical investigations into genetic variants associated with promoter activity, drug responses and immune infiltration across multiple cancer types.

20.
Cancer Lett ; 576: 216405, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37783391

RESUMO

Lenvatinib is a standard therapy option for advanced hepatocellular carcinoma (HCC), but resistance limits clinical benefits. In this study, we identified inhibition of ROS levels and reduced redox status in Lenvatinib-resistant HCC. Integrating RNA-seq with unbiased whole-genome CRISPR-Cas9 screen analysis indicated LINC01607 regulated the P62 to enhance drug resistance by affecting mitophagy and antioxidant pathways. Underlying mechanisms were investigated both in vitro and in vivo. We initially confirmed that LINC01607, as a competing endogenous RNA (ceRNA) competing with mirRNA-892b, triggered protective mitophagy by upregulating P62, which reduced ROS levels and promoted drug resistance. Furthermore, LINC01607 was proved to resist oxidative stress by regulating the P62-Nrf2 axis, which transcriptionally regulated the expression of LINC01607 to form a positive feedback loop. Finally, silencing LINC01607 combined with Lenvatinib reversed resistance in animal and patient-derived organoid models. In conclusion, we proposed a novel mechanism of Lenvatinib resistance involving ROS homeostasis. This work contributed to understanding redox homeostasis-related drug resistance and provided new therapeutic targets and strategies for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Mitofagia , Espécies Reativas de Oxigênio , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA