RESUMO
Induction of pyroptosis is proposed as a promising strategy for the treatment of hematological malignancies, but little is known. In the present study, we find clioquinol (CLQ), an anti-parasitic drug, induces striking myeloma and leukemia cell pyroptosis on a drug screen. RNA sequencing reveals that the interferon-inducible genes IFIT1 and IFIT3 are markedly upregulated and are essential for CLQ-induced GSDME activation and cell pyroptosis. Specifically, IFIT1 and IFIT3 form a complex with BAX and N-GSDME therefore directing N-GSDME translocalization to mitochondria and increasing mitochondrial membrane permeabilization and triggering pyroptosis. Furthermore, venetoclax, an activator of BAX and an inhibitor of Bcl-2, displays strikingly synergistic effects with CLQ against leukemia and myeloma via pyroptosis. This study thus reveals a novel mechanism for mitochondrial GSDME in pyroptosis and it also illustrates that induction of IFIT1/T3 and inhibition of Bcl-2 orchestrate the treatment of leukemia and myeloma via pyroptosis.
Assuntos
Leucemia , Mieloma Múltiplo , Humanos , Piroptose , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Proteína X Associada a bcl-2/metabolismo , Mitocôndrias/metabolismo , Proteínas de Ligação a RNA/metabolismo , Leucemia/metabolismo , Caspase 3/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismoRESUMO
BACKGROUND: Abelson tyrosine kinase (c-Abl) is frequently mutated and highly expressed, and promotes non-small-cell lung cancer (NSCLC) survival, metastasis and tumorigenesis. c-Abl could also be modified through ubiquitination, but the underlying mechanism is not well understood. METHODS: Mass spectrometry assays were performed to search c-Abl deubiquitination enzymes. The molecular mechanism was determined using Co-IP assays, pull-down assays, Western blotting upon gene knockdown or overexpression. Cell lines and animal models were used to investigate the role of c-Abl and USP7 in NSCLC. EdU staining assay and Transwell assay were performed to evaluate the proliferation and migration ability of NSCLC cells, respectively. RESULTS: Ubiquitin-specific protease 7 (USP7) is found to upregulate c-Abl via the deubiquitinase screen. USP7 interacts with c-Abl and decreases its K48-linked polyubiquitination, thereby increasing the stability of c-Abl. In addition to the wild-type one, c-Abl mutants can also be deubiquitinated and stabilized by USP7. Moreover, USP7 promotes c-Abl accumulation in cytoplasm by increasing its binding to 14-3-3α/ß and activates the oncogenic c-Abl signalling pathway. Furthermore, the USP7/c-Abl axis promotes NSCLC cell glycolysis by direct phosphorylating and stabilizing hexokinase-2 (HK2). Knockdown of USP7 or c-Abl suppresses NSCLC cell glycolysis and reduces lactate production. Further studies revealed that overexpression of USP7 facilitates NSCLC cell growth and metastasis as well as xenograft growth in nude mice, while these activities are suppressed with USP7 or c-Abl being knocked down. CONCLUSIONS: USP7 is a deubiquitinase of c-Abl and upregulates its oncogenic activity. USP7 promotes NSCLC cell metabolism by activating c-Abl and HK2. Targeting the USP7/c-Abl/HK2 axis might be a potential strategy to the precision therapy of NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Camundongos Nus , Glicólise/genéticaRESUMO
The transcription factor PBX1 is regarded as an oncogene in various cancers, but its role in non-small cell lung cancer (NSCLC) and the detailed mechanism is not known. In the present study, we found that PBX1 is downregulated in NSCLC tissues and inhibits NSCLC cell proliferation and migration. Subsequently, we performed an affinity purification-coupled tandem mass spectrometry (MS/MS) and found the ubiquitin ligase TRIM26 in the PBX1 immunoprecipitates. Moreover, TRIM26 binds to and mediates PBX1 for K48-linked polyubiquitination and proteasomal degradation. Noticeably, TRIM26 activity depends on its C-terminal RING domain when it is deleted TRIM26 loses its function towards PBX1. TRIM26 further inhibits PBX1 transcriptional activity and downregulates the PBX1 downstream genes, such as RNF6. Moreover, we found that overexpression of TRIM26 significantly promotes NSCLC proliferation, colony formation, and migration in contradiction to PBX1. TRIM26 is highly expressed in NSCLC tissues and predicts poor prognosis. Lastly, the growth NSCLC xenografts is promoted by overexpression of TRIM26 but is suppressed by TRIM26 knockout. In conclusion, TRIM26 is a ubiquitin ligase of PBX1 and it promotes while PBX1 inhibits NSCLC tumor growth. TRIM26 might be a novel therapeutic target for the treatment of NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Espectrometria de Massas em Tandem , Neoplasias Pulmonares/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismoRESUMO
Proteasomes are overexpressed in multiple myeloma (MM) and proteasomal inhibitors (PIs) have been widely used for the treatment of MM. PIs are reported to induce MM cell apoptosis but impair necroptosis. In the present study, we found that PIs MG132 and bortezomib induce MM cell pyroptosis, a novel type of cell death, in a GSDME-dependent manner. Lack of GSDME totally blocks PI-induced pyroptosis. Interestingly, we found that Caspase-3/6/7/9 are all involved in pyroptosis triggered by PIs because the specific inhibitor of each caspase ablates GSDME activation. PIs markedly reduce mitochondrial membrane potential. Moreover, PIs disrupt the interaction of Bcl-2 and BAX, induce cytochrome c release from mitochondria to cytosol and activate GSDME. Furthermore, we found that overexpression of an N-terminal portion of GSDME suffices to release cytochrome c from mitochondria and to activate Caspase-3/9, suggesting N-GSDME might penetrate the mitochondrial membrane. Consistent with Bcl-2 inhibition, BAX can induce MM cell pyroptosis in a GSDME-dependent manner. In accordance with these findings, inhibition of Bcl-2 synergizes with PIs to induce MM cell pyroptosis. Therefore, the present study indicates that PIs trigger MM cell pyroptosis via the mitochondrial BAX/GSDME pathway and provides a rationale for combined treatment of MM with Bcl-2 and proteasome inhibitors to increase therapeutic efficiency via induction of pyroptosis.