Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 12: 733715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630524

RESUMO

Background: 5-Methylcytidine (m5C) is the most common RNA modification and plays an important role in multiple tumors including cervical cancer (CC). We aimed to develop a novel gene signature by identifying m5C modification subtypes of CC to better predict the prognosis of patients. Methods: We obtained the expression of 13 m5C regulatory factors from The Cancer Genome Atlas (TCGA all set, 257 patients) to determine m5C modification subtypes by the "nonnegative matrix factorization" (NMF). Then the "limma" package was used to identify differentially expressed genes (DEGs) between different subtypes. According to these DEGs, we performed Cox regression and Kaplan-Meier (KM) survival analysis to establish a novel gene signature in TCGA training set (128 patients). We also verified the risk prediction effect of gene signature in TCGA test set (129 patients), TCGA all set (257 patients) and GSE44001 (300 patients). Furthermore, a nomogram including this gene signature and clinicopathological parameters was established to predict the individual survival rate. Finally, the expression and function of these signature genes were explored by qRT-PCR, immunohistochemistry (IHC) and proliferation, colony formation, migration and invasion assays. Results: Based on consistent clustering of 13 m5C-modified genes, CC was divided into two subtypes (C1 and C2) and the C1 subtype had a worse prognosis. The 4-gene signature comprising FNDC3A, VEGFA, OPN3 and CPE was constructed. In TCGA training set and three validation sets, we found the prognosis of patients in the low-risk group was much better than that in the high-risk group. A nomogram incorporating the gene signature and T stage was constructed, and the calibration plot suggested that it could accurately predict the survival rate. The expression levels of FNDC3A, VEGFA, OPN3 and CPE were all high in cervical cancer tissues. Downregulation of FNDC3A, VEGFA or CPE expression suppressed the proliferation, migration and invasion of SiHa cells. Conclusions: Two m5C modification subtypes of CC were identified and then a 4-gene signature was established, which provide new feasible methods for clinical risk assessment and targeted therapies for CC.

2.
Cancer Cell Int ; 21(1): 353, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34229669

RESUMO

BACKGROUND: Ovarian cancer (OC) is the most lethal gynaecological tumor. Changes in glycolysis have been proven to play an important role in OC progression. We aimed to identify a novel glycolysis-related gene signature to better predict the prognosis of patients with OC. METHODS: mRNA and clinical data were obtained from The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC) and Genotype Tissue Expression (GTEx) database. The "limma" R package was used to identify glycolysis-related differentially expressed genes (DEGs). Then, a multivariate Cox proportional regression model and survival analysis were used to develop a glycolysis-related gene signature. Furthermore, the TCGA training set was divided into two internal test sets for validation, while the ICGC dataset was used as an external test set. A nomogram was constructed in the training set, and the relative proportions of 22 types of tumor-infiltrating immune cells were evaluated using the "CIBERSORT" R package. The enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were determined by single-sample gene set enrichment analysis (ssGSEA) with the "GSVA" R package. Finally, the expression and function of the unreported signature genes ISG20 and SEH1L were explored using immunohistochemistry, western blotting, qRT-PCR, proliferation, migration, invasion and xenograft tumor assays. RESULTS: A five-gene signature comprising ANGPTL4, PYGB, ISG20, SEH1L and IRS2 was constructed. This signature could predict prognosis independent of clinical factors. A nomogram incorporating the signature and three clinical features was constructed, and the calibration plot suggested that the nomogram could accurately predict the survival rate. According to ssGSEA, the signature was associated with KEGG pathways related to axon guidance, mTOR signalling, tight junctions, etc. The proportions of tumor-infiltrating immune cells differed significantly between the high-risk group and the low-risk group. The expression levels of ISG20 and SEH1L were lower in tumor tissues than in normal tissues. Overexpression of ISG20 or SEH1L suppressed the proliferation, migration and invasion of Caov3 cells in vitro and the growth of xenograft tumors in vivo. CONCLUSION: Five glycolysis-related genes were identified and incorporated into a novel risk signature that can effectively assess the prognosis and guide the treatment of OC patients.

3.
ACS Appl Mater Interfaces ; 12(46): 52208-52220, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33146990

RESUMO

Heterostructures with a rich phase boundary are attractive for surface-mediated microwave absorption (MA) materials. However, understanding the MA mechanisms behind the heterogeneous interface remains a challenge. Herein, a phosphine (PH3) vapor-assisted phase and structure engineering strategy was proposed to construct three-dimensional (3D) porous Ni12P5/Ni2P heterostructures as microwave absorbers and explore the role of the heterointerface in MA performance. The results indicated that the heterogeneous interface between Ni12P5 and Ni2P not only creates sufficient lattice defects for inducing dipolar polarization but also triggers uneven spatial charge distribution for enhancing interface polarization. Furthermore, the porous structure and proper component could provide an abundant heterogeneous interface to strengthen the above polarization relaxation process, thereby greatly optimizing the electromagnetic parameters and improving the MA performance. Profited by 3D porous heterostructure design, P400 could achieve the maximum reflection loss of -50.06 dB and an absorption bandwidth of 3.30 GHz with an ultrathin thickness of 1.20 mm. Furthermore, simulation results confirmed its superior ability (14.97 dB m2 at 90°) to reduce the radar cross section in practical applications. This finding may shed light on the understanding and design of advanced heterogeneous MA materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA