Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 931: 172912, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38697524

RESUMO

Drought will inevitably affect linkages between different water components, which have previously been investigated across different spatiotemporal scales. Elucidating drought-induced precipitation (P) partition effects remain uncertain because they involve drought propagation, even inducing streamflow (Q) non-stationarity. This study collected data on 1069 catchments worldwide to investigate Q and evapotranspiration (ET) impacts from P deficit-derived reductions in drought propagation. Results show that P deficits trigger soil moisture drought, subsequently inducing negative Q and ET anomalies that vary under different climate regimes. Generally, drought-induced hydrological legacies indicate that breaks in hydrological linkages cause a relatively rapid Q response (i.e., negative Q anomaly), amplified by drought strength and duration. Compared with the Q response, the ET response to drought stress involves a more complex, associative vegetation response and an associative evaporative state controlled by water and energy, which lags behind the Q response and can also intensify with increasing drought severity and duration. This is confirmed by the ET response under different climate regimes. Namely, in drier climates, a positive ET anomaly can be detected in its early stages, this is unusual in wetter climate. Additionally, Q and ET sensitivity to drought strength can be mechanistically explained by the water and energy status. This implies that ET is mainly controlled by water and energy, resulting in higher and lower drought sensitivity within water- and energy-limited regions, respectively. Understanding the impacts of drought on Q and ET response is essential for identifying key linkages in drought propagation across different climate regimes. Our findings will also be useful for developing early warning and adaptation systems that support both human and ecosystem requirements.

2.
Sci Total Environ ; 929: 172758, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670382

RESUMO

Revegetation has resulted in a trend of increasing vegetation greenness on the Chinese Loess Plateau. However, it remains unclear whether the regional vegetation coverage exceeds hydroclimatic limitations in the context of revegetation, and the hydrological effects of greening are controversial. Eagleson's optimality hypothesis can explain some of the hydrological effects on the Loess Plateau. Here, building on previous research, the geospatial vegetation states were estimated for pre- and post-revegetation periods on the Loess Plateau from 1982 to 2015 using Eagleson's ecological optimality theory. Additionally, a drought composite analysis approach was utilized to investigate the hydrological effects related to drought (including sensitivity and partitioning) under various vegetation states. It was found that revegetation increased the proportion of catchments in the equilibrium state and decreased the proportion in the disturbed state, owing to a wetter climate compared with the pre-revegetation period. Root-zone soil drought, driven by precipitation (P) deficit, asymmetrically triggered hydrological effects for both the pre- and post-revegetation periods, with reduced runoff (Q) for both periods and a decrease in evapotranspiration (ET) during the pre-revegetation period but an increase in ET during the post-revegetation period. Moreover, catchments in an equilibrium state exhibited lower sensitivity between ET and P, and more stable partitioning of ET with regards to P, compared with those in a disturbed state. These results underscore the theoretical framework that an equilibrium state is crucial for maintaining ecosystem ET. Our results highlight the necessity of considering the hydrologic regulation of vegetation states when assessing the hydrological effects of vegetation change.

3.
Sci Total Environ ; 903: 166203, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37582440

RESUMO

Climate change intensification (e.g., long-term drought) dramatically triggers catchment property changes, which introduces larger uncertainties for describing catchment hydrological behavior. In this study, hydrological behavior responses to multiyear drought were explored, and then causes were explained. The hydrological response to multiyear drought was explored using a magnitude of shift (M) in describing the relationship between precipitation (P) and streamflow (Q) in different catchment states, and a novel method, the trigonometric function decomposition method within the Budyko framework (the TFD method), was applied to assess the causes of Q changes. Several conclusions can be drawn: (i) multiyear drought mainly caused insignificant and significant upward (p < 0.05) changes in the P-Q relationship among 95.45 % of the studied catchments (p < 0.05); (ii) more server drying, lower leaf area index (LAI) and slope can induce a higher M via multiyear drought. In particular, catchment water storage, indicated by the deep soil layer in the Loess Plateau, can effectively mitigate the Q reduction and resulted in a 77.27 % (17/22) upward shift compared with the expected Q reduction; (iii) an asymmetric effect was caused by a multiyear P deficit, that is, (P-Q)/P increase and catchment property parameter (n) decrease were induced by the increases in ratio between potential evapotranspiration and P (Ep/P), suggesting that the catchment properties can mitigate the Q reduction; and (iv) catchment properties had negative effects on the Q reduction (7.76 mm a-1), and partially offset Q reduction (-21.32 mm a-1) resulted from climate change during the multiyear drought period. All of these results indicated that multiyear drought triggered Q reduction, while catchment behavior in the changeable induction mechanism induced a nonlinear Q response to P reduction, which is important for accurate Q projections and appropriate adaptation strategies for droughts.

4.
Sci Total Environ ; 881: 163551, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37072101

RESUMO

Coastal wetlands are an important carbon sink but are sensitive to climate changes. The response of CO2 emissions to these changes differs under different hydroclimatic conditions. Here, this article used meta-analysis to synthesize data from Chinese coastal salt marshes, to analyze sensitivities for CO2 emissions, and then to assess the relative contributions of air temperature (Ta) and precipitation (Pre). This article used the ratio between potential evaporation (Ep) and Pre to divide Chinese coastal saltmarshes into water- (Ep/Pre > 1) and energy-limited regions (Ep/Pre ≤ 1). Results show that emissions are more sensitive to both Pre and Ta in water-limited regions (E¯ = 0.60 eV, slope = 0.37) than in energy-limited regions (E¯ = 0.23 eV, slope = 0.04). Comparing the relative effects of changes in Ta (△CO2 = 21.86 mg m-2 h-1) and Pre (△CO2 = 7.19 mg m-2 h-1) on CO2 emissions shows that warming contributes more to changes in CO2 emissions. The response of emissions to changes in Pre is asymmetric and shows that warmer and drier may have antagonistic effects, while warmer and wetter may have synergistic effects. There was a 2.15 mg m-2 h-1 change in emissions in energy-limited regions when Pre increased by 139.69 mm, and a decrease of -0.15 mg m-2 h-1 in emissions when Pre decreased by 1.28 mm in water-limited regions. Climate change has the greatest impact on Phragmites australis in CO2 emissions, especially under warmer and wetter conditions in energy-limited regions. This indicates that warming drives CO2 emissions, while changes in Pre (resulting in wetter or dryer conditions) can mitigate or strengthen CO2 emissions from coastal wetlands in China. This article offers a new perspective and suggests that differences in hydroclimatic conditions should be considered when discussing carbon emissions from coastal wetlands.

5.
Sci Total Environ ; 876: 162771, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-36907388

RESUMO

Propagation thresholds that trigger a transition between meteorological drought and hydrological drought are poorly understood, which hinders effective establishment of drought warning systems and prevention measures. Here, propagation thresholds were assessed by firstly identifying drought events during 1961-2016 in the Yellow River Basin, China, subsequently pooling, excluding, and matching them, and finally assessing their threshold conditions by using a combined Copula function and transition rate (Tr) analysis. These results show that response time changed according to variations in drought duration and watershed characteristics. Importantly, response times increased according to the timescales over which they were studied; for example, the Wenjiachuan watershed recorded response times of 8, 10, 10, and 13 months when examined at 1-, 3-, 6-, and 12-month timescales, respectively. Additionally, the severity and duration of meteorological and hydrological drought events both increased when events were combined rather than studied individually. These effects were also amplified for matched meteorological and hydrological droughts by factors of 1.67 (severity) and 1.45 (duration), respectively. Shorter response times were identified in the Linjiacun (LJC) and Zhangjiashan (ZJS) watersheds, and correlated with their relatively small Tr values of 43 % and 47 %, respectively. Higher propagation thresholds for drought characteristics (e.g., 1.81 and 1.95 for drought severity in the LJC and ZJS watersheds, respectively) imply that shorter response times tended to have greater effects on hydrological drought events and lowered their Tr, and vice versa. These results provide new insight into propagation thresholds used for water resource planning and management, and may help to mitigate the effects of future climate change.

6.
Sci Total Environ ; 857(Pt 2): 159560, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36270361

RESUMO

Increases in the intensity and frequency of droughts affected by climate changes induce greater uncertainty in precipitation (P) and streamflow (Q) relationship (P-Q relationship). Here, alteration in P-Q relations were assessed resulted from multi-year drought (≥7 years), lag and amplification effects were analyzed between meteorological and hydrological droughts, and then hydrological legacy induced by droughts were presented using the leaf area index (LAI) and the Horton index (ratio of watershed ET to catchment wetness) in different arid regions of 1210 selected catchments across global catchments. Results show that reduced P causes lower Q in arid regions, while tends to induce a higher Q in humid regions than expected. Generally, the severity and intensity were amplified in hydrological drought compared with its triggering meteorological drought. Interestingly, Q reduction was more likely to be induced by meteorological drought in more arid climates, while more likely to be recovered from Q deficit than meteorological drought in the humid regions. Unexpected, vegetation, stimulated by prolonged meteorological and hydrological droughts, tended to maintain higher LAI and subsequently resulted in a lower Horton index, especially in the humid regions. Combined with a traditional bucket model, a conceptual model was developed to elucidate threshold switching characteristics during the drought propagation, and deduced that vegetation played a vital role in partitioning of P and regulating how the catchment coped with climate changes. These new understanding of the hydrological legacy of meteorological drought provides important insights into hydrological mechanisms and the ability of ecology to regulate hydrological processes.


Assuntos
Secas , Hidrologia , Meteorologia , Mudança Climática , Modelos Teóricos
7.
Natl Sci Rev ; 9(1): nwab091, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35070327

RESUMO

Cropland redistribution to marginal land has been reported worldwide; however, the resulting impacts on environmental sustainability have not been investigated sufficiently. Here we investigated the environmental impacts of cropland redistribution in China. As a result of urbanization-induced loss of high-quality croplands in south China (∼8.5 t ha-1), croplands expanded to marginal lands in northeast (∼4.5 t ha-1) and northwest China (∼2.9 t ha-1) during 1990-2015 to pursue food security. However, the reclamation in these low-yield and ecologically vulnerable zones considerably undermined local environmental sustainability, for example increasing wind erosion (+3.47%), irrigation water consumption (+34.42%), fertilizer use (+20.02%) and decreasing natural habitats (-3.11%). Forecasts show that further reclamation in marginal lands per current policies would exacerbate environmental costs by 2050. The future cropland security risk will be remarkably intensified because of the conflict between food production and environmental sustainability. Our research suggests that globally emerging reclamation of marginal lands should be restricted and crop yield boost should be encouraged for both food security and environmental benefits.

8.
Sci Rep ; 8(1): 14263, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30250207

RESUMO

Sleep disturbance is a common complaint in cancer patients. However, less is known about the parameters of sleep in patients with nasopharyngeal cancer (NPC) and their family caregivers (FCs) when they are about to begin treatment. We investigated the sleep quality in patients with NPC and their FCs before treatment and determined the related factors that predict sleep disturbance in these patients before therapy. A total of 101 patient-FC dyads were recruited. They completed the Pittsburgh Sleep Quality Index (PSQI) prior to treatment. No differences were found in sleep disturbance between patients (38.6%) and their FCs (31.7%). Patients reported significantly higher rates of short sleep duration than their FCs (P = 0.011). Logistic regression analyses showed that older patients were more prone to suffer from poor sleep quality before treatment (OR = 1.06, 95% CI = 1.01-1.10, P = 0.008), while patients with a higher BMI were less likely to experience sleep disturbance (OR = 0.83, 95% CI = 0.71-0.96, P = 0.012). Sleep disturbance is a significant problem in patients with NPC and their FCs before therapy. Older patients and those with a lower BMI appear to be more inclined to suffer from poor sleep before treatment.


Assuntos
Cognição/fisiologia , Carcinoma Nasofaríngeo/epidemiologia , Transtornos do Sono-Vigília/epidemiologia , Sono/fisiologia , Adulto , Idoso , Cuidadores/psicologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo/complicações , Carcinoma Nasofaríngeo/patologia , Transtornos do Sono-Vigília/complicações , Transtornos do Sono-Vigília/patologia
9.
Sci Rep ; 8(1): 12788, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143725

RESUMO

Understanding glacier mass balance (MB) change under global warming is important to assess the impact of glacier change on water resources. This study evaluated the applicability of a modified distributed surface energy balance model (DSEBM) with 3-h temporal and 100-m spatial resolution to the alpine Dongkemadi Glacier (DKMD) in the central Tibetan Plateau region, analyzed the causes of glacier MB variations with respect to energy balance, and evaluated MB changes under various climate scenarios. Results showed that: (i) the modified model can describe surface energy and MB of XDKMD well; (ii) net shortwave and longwave radiation, accounting for more than 80% of total heat flux, dominated the glacier energy balance during both summer and winter months; (iii) summer MB spatial patterns dominated annual MB, consistent with the fact that DKMD is a summer accumulation type glacier; and (iv) effect of increase in air temperature on glacier MB is higher than that of decrease in air temperature. The sensitivity of MB revealed by the modified DSEBM can help to understand MB changes influenced by the climate changes and to regulate water management strategies to adapt to climate changes at the catchment scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA