Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(8): 14289-14299, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38859379

RESUMO

This work presents a bulk refractive index sensor based on quasi-bound states in the continuum (BICs) induced by broken symmetries in metasurfaces. The symmetry is broken by detuning the size and position of silicon particles periodically arranged in an array, resulting in multiple quasi-BIC resonances. We investigate the sensing characteristics of each of the resonances by measuring the spectral shift in response to changes in the refractive index of the surrounding medium. In addition, we reveal the sensing range of the different resonances through simulations involving a layer of deviating refractive index of increasing thickness. Interestingly, the resonances show very different responses, which we describe via the analysis of the near-field. This work contributes to the development of highly sensitive and selective BIC-based sensors that can be used for a wide range of applications.

2.
Adv Mater ; : e2303502, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37657490

RESUMO

In recent years, phase-change materials have gained importance in nanophotonics and optoelectronics. Sizable optical contrast and added degree of freedom from phase switching drive the use of phase-change materials in various optical devices with outstanding results and potential for real-world applications. The local crystallization/amorphization of phase-change materials and the corresponding reflectance tuning by the crystallized/amorphized region size have potential applications, for example, for future dynamic display devices. Although the resolution is much higher than in current display devices, the pixel sizes in those devices are limited by the locally switchable structure size. Here, the spot sizes are further reduced by using ion beams instead of laser beams, dramatically increasing pixel density, demonstrating superior resolution. In addition, the power to sputter away materials can be utilized in creating nanostructures with relative height differences and local contrast. The experiment focuses on one archetypal phase-change material, Sb2 Se3 , prepared by pulsed-laser deposition on a reflective gold substrate. This study demonstrates that structural colors can be produced and reflectance tuning can be achieved by focused ion beam milling/sputtering of phase-change materials at the nanoscale. Furthermore, the local structuring of phase-change materials by focused ion beam can produce high-pixel-density display devices with superior resolutions.

3.
Nature ; 619(7968): 46-51, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37225992

RESUMO

In superconductors possessing both time and inversion symmetries, the Zeeman effect of an external magnetic field can break the time-reversal symmetry, forming a conventional Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state characterized by Cooper pairings with finite momentum1,2. In superconductors lacking (local) inversion symmetry, the Zeeman effect may still act as the underlying mechanism of FFLO states by interacting with spin-orbit coupling (SOC). Specifically, the interplay between the Zeeman effect and Rashba SOC can lead to the formation of more accessible Rashba FFLO states that cover broader regions in the phase diagram3-5. However, when the Zeeman effect is suppressed because of spin locking in the presence of Ising-type SOC, the conventional FFLO scenarios are no longer effective. Instead, an unconventional FFLO state is formed by coupling the orbital effect of magnetic fields with SOC, providing an alternative mechanism in superconductors with broken inversion symmetries6-8. Here we report the discovery of such an orbital FFLO state in the multilayer Ising superconductor 2H-NbSe2. Transport measurements show that the translational and rotational symmetries are broken in the orbital FFLO state, providing the hallmark signatures of finite-momentum Cooper pairings. We establish the entire orbital FFLO phase diagram, consisting of a normal metal, a uniform Ising superconducting phase and a six-fold orbital FFLO state. This study highlights an alternative route to achieving finite-momentum superconductivity and provides a universal mechanism to preparing orbital FFLO states in similar materials with broken inversion symmetries.

4.
Nano Lett ; 22(8): 3204-3211, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35385281

RESUMO

Graphene moiré superlattice formed by rotating two graphene sheets can host strongly correlated and topological states when flat bands form at so-called magic angles. Here, we report that, for a twisting angle far away from the magic angle, the heterostrain induced during stacking heterostructures can also create flat bands. Combining a direct visualization of strain effect in twisted bilayer graphene moiré superlattices and transport measurements, features of correlated states appear at "non-magic" angles in twisted bilayer graphene under the heterostrain. Observing correlated states in these "non-standard" conditions can enrich the understanding of the possible origins of the correlated states and widen the freedom in tuning the moiré heterostructures and the scope of exploring the correlated physics in moiré superlattices.

5.
ACS Appl Mater Interfaces ; 13(28): 33677-33684, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34227384

RESUMO

van der Waals heterostructures are currently the focus of intense investigation; this is essentially due to the unprecedented flexibility offered by the total relaxation of lattice matching requirements and their new and exotic properties compared to the individual layers. Here, we investigate the hybrid transition-metal dichalcogenide/2D perovskite heterostructure WS2/(PEA)2PbI4 (where PEA stands for phenylethylammonium). We present the first density functional theory (DFT) calculations of a heterostructure ensemble, which reveal a novel band alignment, where direct electron transfer is blocked by the organic spacer of the 2D perovskite. In contrast, the valence band forms a cascade from WS2 through the PEA to the PbI4 layer allowing hole transfer. These predictions are supported by optical spectroscopy studies, which provide compelling evidence for both charge transfer and nonradiative transfer of the excitation (energy transfer) between the layers. Our results show that TMD/2D perovskite (where TMD stands for transition-metal dichalcogenides) heterostructures provide a flexible and convenient way to engineer the band alignment.

6.
Sci Rep ; 11(1): 10080, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980867

RESUMO

Layered transition metal dichalcogenides (TMDCs) have shown great potential for a wide range of applications in photonics and optoelectronics. Nevertheless, valley decoherence severely randomizes its polarization which is important to a light emitter. Plasmonic metasurface with a unique way to manipulate the light-matter interaction may provide an effective and practical solution. Here by integrating TMDCs with plasmonic nanowire arrays, we demonstrate strong anisotropic enhancement of the excitonic emission at different spectral positions. For the indirect bandgap transition in bilayer WS2, multifold enhancement can be achieved with the photoluminescence (PL) polarization either perpendicular or parallel to the long axis of nanowires, which arises from the coupling of WS2 with localized or guided plasmon modes, respectively. Moreover, PL of high linearity is obtained in the direct bandgap transition benefiting from, in addition to the plasmonic enhancement, the directional diffraction scattering of nanowire arrays. Our method with enhanced PL intensity contrasts to the conventional form-birefringence based on the aspect ratio of nanowire arrays where the intensity loss is remarkable. Our results provide a prototypical plasmon-exciton hybrid system for anisotropic enhancement of the PL at the nanoscale, enabling simultaneous control of the intensity, polarization and wavelength toward practical ultrathin photonic devices based on TMDCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA