Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39336279

RESUMO

The exploration of Hot Dry Rock (HDR) geothermal energy is essential to fulfill the energy demands of the increasing population. Investigating the physical and mechanical properties of heated rock under different cooling methods has significant implications for the exploitation of HDR. In this study, ultrasonic testing, uniaxial strength compression experiments, Brazilian splitting tests, nuclear magnetic resonance (NMR), and scanning electron microscope (SEM) were conducted on heated granite after different cooling methods, including cooling in air, cooling in water, cooling in liquid nitrogen, and cycle cooling in liquid nitrogen. The results demonstrated that the density, P-wave velocity (Vp), uniaxial compressive strength (UCS), tensile strength (σt), and elastic modulus (E) of heated granite tend to decrease as the cooling rate increases. Notably, heated granite subjected to cyclic liquid nitrogen cooling exhibits a more pronounced decline in physical and mechanical properties and a higher degree of damage. Furthermore, the cooling treatments also lead to an increase in rock pore size and porosity. At a faster cooling rate, the fracture surfaces of the granite transition from smooth to rough, suggesting enhanced fracture propagation and complexity. These findings provide critical theoretical insights into optimizing stimulation performance strategies for HDR exploitation.

2.
ACS Omega ; 9(19): 21528-21537, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38764677

RESUMO

Underground fractured rock masses are susceptible to failure under the combined influence of true triaxial stresses and pore pressure, posing severe threats to personnel and production safety of underground engineering. To investigate the influence of intermediate principal stress (σ2) on the mechanical and water diffusion volume change (ΔV) characteristics during the failure process of cracked rocks under stable pore pressure, this study conducted true triaxial strength experiments on cracked sandstone with stable pore pressure. The results demonstrated that with the increase of σ2, crack initiation stress (σci), crack damage stress (σcd) and the peak stress (σ1,peak) of cracked sandstone initially increase and then decrease. Conversely, ΔV tends to decrease first and then increase with the increase of σ2. This inverse relationship indicates that under elevated σ2, the decreased strength of cracked rock could lead to an increase in ΔV, which may increase the probability of water inrush disasters. The findings of this study provide a theoretical reference for the stability of rock mass engineering and the prevention of water inrush disasters.

3.
Materials (Basel) ; 17(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673122

RESUMO

Understanding the mechanical properties of coal is crucial for efficient mining and disaster prevention in coal mines. Coal contains numerous cracks and fissures, resulting in low strength and challenges in preparing standard samples for testing coal fracture toughness. In engineering, indicators such as the hardness coefficient (f value) and Hardgrove grindability index (HGI) are straightforward to measure. Various experiments, including drop weight, grinding, uniaxial compressive strength and three-point bending experiments, were conducted using notched semi-circular bend (NSCB) specimens and particle sizes of 1-2 mm/0.425-1 mm. Theoretical and experimental results indicate that the hardness coefficient of coal and rock is proportional to the crushing work ratio and inversely proportional to the mean equivalent diameter. Moreover, the square of the fracture toughness of coal and rock is directly proportional to the crushing work ratio, inversely proportional to the newly added area, directly proportional to the mean equivalent diameter and directly proportional to the hardness coefficient. The Mode-I fracture toughness of coal and rock can be rapidly determined through the density, the equivalent diameter after crushing and the elastic modulus, with experimental verification of its accuracy. Considering that smaller particle sizes exhibit greater resistance to breakage, the distribution mode of new surface areas after particle breakage was established, influenced by the initial particle size and the energy of a single broken particle. This study can assist in quickly and accurately determining the fracture toughness of coal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA