Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Arch Insect Biochem Physiol ; 114(3): e22045, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37602787

RESUMO

Organophosphate (OP) resistance has been prevalent in Musca domestica populations worldwide since 1960s. Previous studies have demonstrated that point mutations of the acetylcholinesterase gene (Ace) are one of the important molecular mechanisms underlying OP resistance. However, few studies have investigated the molecular mechanisms of OP resistance in the past 10 years in China. In this study, we investigated the status of OP resistance and genetic diversity of Ace in the field populations of houseflies in Guizhou Province of China. The bioassays showed that the houseflies had 142-304-fold resistance to dichlorvos (DDVP) and 122-364-fold resistance to temephos, compared to the susceptible houseflies. Five nonsynonymous mutations (Y226F, V260L, G342A/V, F407Y) in Ace were detected among the 7 field populations, with an average frequency of 5.4%, 55%, 68%, 32%, and 94%, respectively, of which the Y226F mutation had not been reported previously. Eleven combinations of triple mutations (at positions 260, 342, and 407) were observed, of which the combination 260L/V+342A/V+407Y was predominant. The ZY and AS populations showed greatest diversity of allelic combination and the other five populations showed different distributions among different regions. These results indicate that the resistance to OPs is prevalent among the housefly populations and target-site insensitivity is the main cause of resistance in Guizhou Province. The difference in distribution and the allelic diversity of Ace in field populations may be due to the complexity and variability of insecticide application. It is necessary to monitor resistance to insecticides and conduct management of houseflies in Guizhou Province.

2.
J Vis Exp ; (186)2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-36094286

RESUMO

As a vital vector of dengue fever, yellow fever, and other mosquito-borne diseases, Aedes albopictus (Diptera: Culicidae) can be broadly distributed worldwide and cause a severe threat to public health. To date, considering the fast-emerging insecticide resistance in the mosquito, the development of new botanical insecticides to control and reduce Ae. albopictus is urgent and crucial. Therefore, to investigate the decoction effect of the plant C. abrotanoides L. on mosquito larvae killing, we detected the mortality of larvae after treatment with different concentrations (60 mg/mL, 120 mg/mL, and 180 mg/mL) of decoction within a series of time points (12 h, 24 h, 36 h, and 48 h). We found that 24 h with 180 mg/mL C. abrotanoides L. decoction treatment killed 92.35% of mosquitoes relative to the control treatment. Meanwhile, 36 h with 120 mg/mL could also kill more than 90% of mosquitoes. Furthermore, Carassius auratus populations were exposed to 120 mg/mL C. abrotanoides L. decoction for 36 h and were not dead. The mortality evaluation indicated that this concentration is not a harmful level of ecological environmental pollution. This study provides a possible plant candidate that could be used for designing plant-derived insecticides. Additionally, these methods can be altered and applied to other mosquito species.


Assuntos
Aedes , Asteraceae , Inseticidas , Animais , Inseticidas/farmacologia , Larva , Mosquitos Vetores
3.
BMC Infect Dis ; 20(1): 513, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32677899

RESUMO

BACKGROUND: Imported falciparum malaria from Africa has become a key public health challenge in Guizhou Province since 2012. Understanding the polymorphisms of molecular markers of drug resistance can guide selection of antimalarial drugs for the treatment of malaria. This study was aimed to analyze the polymorphisms of pfcrt, pfmdr1, and K13-propeller among imported falciparum malaria cases in Guizhou Province, China. METHOD: Fifty-five imported falciparum malaria cases in Guizhou Province during 2012-2016 were included in this study. Their demographic information and filter paper blood samples were collected. Genomic DNA of Plasmodium falciparum was extracted from the blood samples, and polymorphisms of pfcrt, pfmdr1, and K13-propeller were analyzed with nested PCR amplification followed by sequencing. Data were analyzed with the SPSS17.0 software. RESULTS: The prevalence of pfcrt K76T, pfmdr1 N86Y, and pfmdr1 Y184F mutation was 56.6, 22.2, and 72.2%, respectively, in imported falciparum malaria cases in Guizhou Province. We detected two mutant haplotypes of pfcrt, IET and MNT, with IET being more commonly found (54.7%), and five mutant haplotypes of pfmdr1, of which NFD was the most frequent (53.7%). There were totally 10 combined haplotypes of pfcrt and pfmdr1, of which the haplotype IETNFD possessed a predominance of 28.8%. In addition, three nonsynonymous mutations (S459T, C469F, and V692L) and two synonymous mutations (R471R and V589V) were detected in K13-propeller, all having prevalence less than 6.0%. In particular, a candidate K13 resistance mutation, C469F, was identified for the first time from Democratic Republic of the Congo with the prevalence of 2.0%. CONCLUSIONS: The high prevalence of IET haplotype of pfcrt and NFD haplotype of pfmdr1 suggests the presence of chloroquine, artemether/lumefantrine, and dihydroartemisinin/piperaquine resistance in these cases. Therefore cautions should be made to artemisinin therapy for P. falciparum in Africa. Continuous monitoring of anti-malarial drug efficacy in imported malaria cases is helpful for optimizing antimalarial drug therapy in Guizhou Province, China.


Assuntos
Doenças Transmissíveis Importadas/parasitologia , Resistência a Medicamentos/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Adulto , África/epidemiologia , Substituição de Aminoácidos/genética , Antimaláricos/uso terapêutico , China/epidemiologia , Estudos de Coortes , Feminino , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Masculino , Proteínas de Membrana Transportadoras/genética , Pessoa de Meia-Idade , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação , Plasmodium falciparum/isolamento & purificação , Doença Relacionada a Viagens
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA