RESUMO
Aeromonas dhakensis (A. dhakensis) is becoming an emerging pathogen worldwide, with an increasingly significant role in animals and human health. It is a ubiquitous bacteria found in terrestrial and aquatic milieus. However, there have been few reports of reptile infections. In this study, a bacterial strain isolated from a dead Aldabra giant tortoise was identified as A. dhakensis HN-1 through clinical observation, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS), and gene sequencing analysis. Subsequently, to evaluate its pathogenicity, the detection of virulence genes and mice infection experiments were performed. A. dhakensis HN-1 was found to contain seven virulence genes, including alt, ela, lip, act, aerA, fla, and hlyA. Mice infected with A. dhakensis HN-1 exhibited hemorrhage of varying degrees in multiple organs. The half-maximal lethal dose (LD50) value of A. dhakensis HN-1 for mice was estimated to be 2.05 × 107 colony forming units (CFU)/mL. The antimicrobial susceptibility test revealed that A. dhakensis HN-1 was resistant to amoxicillin, penicillin, ampicillin and erythromycin. This is the first report of A. dhakensis in Aldabra giant tortoises, expanding the currently known host spectrum. Our findings emphasize the need for One Health surveillance and extensive research to reduce the spread of A. dhakensis across the environment, humans, and animals.
Assuntos
Aeromonas , Tartarugas , Humanos , Animais , Camundongos , Virulência/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
Toxoplasma gondii is a widespread protozoan parasite that infects most warm-blooded animals, and felids can serve as intermediate and definitive hosts. Pathological diagnosis and serological and etiological investigations were conducted on a captive caracal (Caracal caracal) carcass collected from China in 2022. Pathological diagnosis revealed that cardiac insufficiency, pulmonary edema, hepatic failure, and renal insufficiency were the causes of the caracal's death. A modified agglutination test (cut-off: 1:25) revealed that IgG antibodies against T. gondii were present in the myocardium juice (1:1600), ascitic fluid (1:3200), and hydropericardium (1:800). A viable T. gondii (TgCaracalCHn2) strain was isolated from the tissue samples (heart, brain, spleen, and skeletal muscle) of this caracal using a mouse bioassay. The genotype of TgCaracalCHn2 was ToxoDB#5 (Type II variant), as determined via RFLP-PCR. The strain was avirulent in Swiss mice and matched the prediction of ROP18 and ROP5 gene alleles of TgCaracalCHn2 (2/2). Mild tissue cysts (203 ± 265) were observed in mice brains after inoculation with TgCaracalCHn2 tachyzoites. ToxoDB#5 is the dominant genotype in North American wildlife, and this is the first documented isolation of T. gondii ToxoDB#5 from China. This indicates that caracal plays an important role in the transmission of this T. gondii genotype.
RESUMO
Many cases of Toxoplasma gondii infection have been reported worldwide in non-human primates (NHPs), especially in captive New World monkeys. However, few studies on toxoplasmosis in Old World monkeys have been conducted. In this study, serological and molecular biological analyses were carried out to look for T. gondii antibodies and T. gondii infection in 13 NHPs from China. T. gondii infection was confirmed in 8 NHP cases. T. gondii antibodies were detected in 1/5 New World monkeys and in 4/7 Old World monkeys. T. gondii DNA was detected in 3/5 New World monkeys and 5/7 Old World monkeys. The one ring-tailed lemur was negative for both antibodies and DNA of T. gondii. The most common clinical manifestations of T. gondii infection were malaise, poor appetite, emaciation, and foamy nasal discharge. The most common histopathological findings were interstitial pneumonia, necrotic hepatitis, necrotizing myocarditis, lymphadenitis, and necrotic splenitis. One viable T. gondii strain was successfully isolated from the myocardium of a patas monkey (Erythrocebus patas) by bioassay in mice. T. gondii tachyzoites were obtained from cell cultures and were designated as TgMonkeyCHn2. The genotype of this strain belongs to ToxoDB genotype #9, and the allele of ROP18/ROP5 gene was 3/6. TgMonkeyCHn2 tachyzoites were avirulent in Swiss mice. To our knowledge, this is the first report of fatal toxoplasmosis in a patas monkey. T. gondii infection in patas monkeys may indicate environmental contamination by oocysts. The patas monkey is a new host record for T. gondii.