Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(10): 5469-5478, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38433716

RESUMO

The electrochemical nitrogen reduction reaction (eNRR) has emerged as a promising strategy for green ammonia synthesis. However, it suffers unsatisfactory reaction performance owing to the low aqueous solubility of N2 in aqueous solution, the high dissociation energy of N≡N, and the unavoidable competing hydrogen evolution reaction (HER). Herein, a MIL-53(Fe)@TiO2 catalyst is designed and synthesized for highly efficient eNRR. Relative to simple MIL-53(Fe), MIL-53(Fe)@TiO2 achieves a 2-fold enhancement in the Faradaic efficiency (FE) with an improved ammonia yield rate by 76.5% at -0.1 V versus reversible hydrogen electrode (RHE). After four cycles of electrocatalysis, MIL-53(Fe)@TiO2 can maintain a good catalytic activity, while MIL-53(Fe) exhibits a significant decrease in the NH3 yield rate and FE by 79.8 and 82.3%, respectively. Benefiting from the synergetic effect between TiO2 and MIL-53(Fe) in the composites, Fe3+ ions can be greatly stabilized in MIL-53(Fe) during the eNRR process, which greatly hinders the catalyst deactivation caused by the electrochemical reduction of Fe3+ ions. Further, the charge transfer ability in the interface of composites can be improved, and thus, the eNRR activity is significantly boosted. These findings provide a promising insight into the preparation of efficient composite electrocatalysts.

2.
Mol Biol Rep ; 51(1): 55, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38165476

RESUMO

BACKGROUND: Reverse transcription quantitative polymerase chain reaction (RT-qPCR) can accurately detect relative gene expression levels in biological samples. However, widely used reference genes exhibit unstable expression under certain conditions. METHODS AND RESULTS: Here, we compared the expression stability of eight reference genes (RPLP0, RPS18, RPL13, EEF1A1, ß-actin, GAPDH, HPRT1, and TUBB) commonly used in liproxstatin-1 (Lip-1)-treated K562 cells using RNA-sequencing and RT-qPCR. The expression of EEF1A1, ACTB, GAPDH, HPRT1, and TUBB was considerably lower in cells treated with 20 µM Lip-1 than in the control, and GAPDH also showed significant downregulation in the 10 µM Lip-1 group. Meanwhile, when we used geNorm, NormFinder, and BestKeeper to compare expression stability, we found that GAPDH and HPRT1 were the most unstable reference genes among all those tested. Stability analysis yielded very similar results when geNorm or BestKeeper was used but not when NormFinder was used. Specifically, geNorm and BestKeeper identified RPL13 and RPLP0 as the most stable genes under 20 µM Lip-1 treatment, whereas RPL13, EEF1A1, and TUBB were the most stable under 10 µM Lip-1 treatment. TUBB and EEF1A1 were the most stable genes in both treatment groups according to the results obtained using NormFinder. An assumed most stable gene was incorporated into each software to validate the accuracy. The results suggest that NormFinder is not an appropriate algorithm for this study. CONCLUSIONS: Stable reference genes were recognized using geNorm and BestKeeper but not NormFinder. Overall, RPL13 and RPLP0 were the most stable reference genes under 20 µM Lip-1 treatment, whereas RPL13, EEF1A1, and TUBB were the most stable genes under 10 µM Lip-1 treatment.


Assuntos
Actinas , Leucemia , Humanos , Células K562 , Sequência de Bases , Análise de Sequência de RNA , Hipoxantina Fosforribosiltransferase , Proteínas de Neoplasias , Proteínas Ribossômicas
4.
Sci Data ; 10(1): 908, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110456

RESUMO

Previous datasets have limitations in generalizing evapotranspiration (ET) across various land cover types due to the scarcity and spatial heterogeneity of observations, along with the incomplete understanding of underlying physical mechanisms as a deeper contributing factor. To fill in these gaps, here we developed a global Highly Generalized Land (HG-Land) ET dataset at 0.5° spatial resolution with monthly values covering the satellite era (1982-2018). Our approach leverages the power of a Deep Forest machine-learning algorithm, which ensures good generalizability and mitigates overfitting by minimizing hyper-parameterization. Model explanations are further provided to enhance model transparency and gain new insights into the ET process. Validation conducted at both the site and basin scales attests to the dataset's satisfactory accuracy, with a pronounced emphasis on the Northern Hemisphere. Furthermore, we find that the primary driver of ET predictions varies across different climatic regions. Overall, the HG-Land ET, underpinned by the interpretability of the machine-learning model, emerges as a validated and generalized resource catering to scientific research and various applications.

5.
Nat Commun ; 14(1): 4183, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443144

RESUMO

The synchronous harvesting and conversion of multiple renewable energy sources for chemical fuel production and environmental remediation in a single system is a holy grail in sustainable energy technologies. However, it is challenging to develop advanced energy harvesters that satisfy different working mechanisms. Here, we theoretically and experimentally disclose the use of MXene materials as versatile catalysts for multi-energy utilization. Ti3C2TX MXene shows remarkable catalytic performance for organic pollutant decomposition and H2 production. It outperforms most reported catalysts under the stimulation of light, thermal, and mechanical energy. Moreover, the synergistic effects of piezo-thermal and piezo-photothermal catalysis further improve the performance when using Ti3C2TX. A mechanistic study reveals that hydroxyl and superoxide radicals are produced on the Ti3C2TX under diverse energy stimulation. Furthermore, similar multi-functionality is realized in Ti2CTX, V2CTX, and Nb2CTX MXene materials. This work is anticipated to open a new avenue for multisource renewable energy harvesting using MXene materials.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Catálise , Energia Renovável
6.
Nat Commun ; 14(1): 1108, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849553

RESUMO

Smart membranes with responsive wettability show promise for controllably separating oil/water mixtures, including immiscible oil-water mixtures and surfactant-stabilized oil/water emulsions. However, the membranes are challenged by unsatisfactory external stimuli, inadequate wettability responsiveness, difficulty in scalability and poor self-cleaning performance. Here, we develop a capillary force-driven confinement self-assembling strategy to construct a scalable and stable CO2-responsive membrane for the smart separation of various oil/water systems. In this process, the CO2-responsive copolymer can homogeneously adhere to the membrane surface by manipulating the capillary force, generating a membrane with a large area up to 3600 cm2 and excellent switching wettability between high hydrophobicity/underwater superoleophilicity and superhydrophilicity/underwater superoleophobicity under CO2/N2 stimulation. The membrane can be applied to various oil/water systems, including immiscible mixtures, surfactant-stabilized emulsions, multiphase emulsions and pollutant-containing emulsions, demonstrating high separation efficiency (>99.9%), recyclability, and self-cleaning performance. Due to robust separation properties coupled with the excellent scalability, the membrane shows great implications for smart liquid separation.

7.
BMC Cardiovasc Disord ; 23(1): 18, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639616

RESUMO

BACKGROUND: Early exercise for acute deep venous thrombosis (DVT) improves the patient's symptoms and does not increase the risk of pulmonary embolism. However, information about its effect on thrombus resolution is limited. The aim of this study was to investigate the role of resistance exercise (RE) in thrombus resolution and recanalization and determine its underlying mechanisms.  METHODS: Ninety-six C57BL/6 J mice were randomly divided into four groups: Control group (C, n = 24); DVT group (D, n = 24); RE + DVT group (ED, n = 24); and inhibitor + RE + DVT group (IED, n = 24). A DVT model was induced by stenosis of the inferior vena cava (IVC). After undergoing IVC ultrasound within 24 h post-operation to confirm DVT formation, mice without thrombosis were excluded. Other mice were sacrificed and specimens were obtained 14 or 28 days after operation. Thrombus-containing IVC was weighed, and the thrombus area and recanalization rate were calculated using HE staining. Masson's trichrome staining was used to analyze the collagen content. RT-PCR and ELISA were performed to examine IL-6, TNF-α, IL-10, and VEGF expression levels. SIRT1 expression was assessed using immunohistochemistry staining and RT-PCR. VEGF-A protein expression and CD-31-positive microvascular density (MVD) in the thrombus were observed using immunohistochemistry.  RESULTS: RE did not increase the incidence of pulmonary embolism. It reduced the weight and size of the thrombus and the collagen content. Conversely, it increased the recanalization rate. It also decreased the levels of the pro-inflammatory factors IL-6 and TNF-α and increased the expression levels of the anti-inflammatory factor IL-10. RE enhanced VEGF and SIRT1 expression levels and increased the MVD in the thrombosis area. After EX527 (SIRT1 inhibitor) was applied, the positive effects of exercise were suppressed. CONCLUSIONS: RE can inhibit inflammatory responses, reduce collagen deposition, and increase angiogenesis in DVT mice, thereby promoting thrombus resolution and recanalization. Its underlying mechanism may be associated with the upregulation of SIRT1 expression.


Assuntos
Condicionamento Físico Animal , Embolia Pulmonar , Treinamento Resistido , Trombose Venosa , Animais , Humanos , Camundongos , Colágeno/metabolismo , Modelos Animais de Doenças , Interleucina-10 , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Embolia Pulmonar/complicações , Sirtuína 1/genética , Sirtuína 1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo , Trombose Venosa/diagnóstico por imagem , Trombose Venosa/terapia , Trombose Venosa/etiologia
8.
Int J Oncol ; 61(4)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36004469

RESUMO

Leukemia is a fatal hematopoietic disorder with a poor prognosis. Drug resistance is inevitable after the long­term use of chemotherapeutic agents. Liproxstatin­1, commonly known as a ferroptosis inhibitor, has never been reported to have anticancer effects. In the present study, the antileukemic role of liproxstatin­1 in K562 leukemia cells was investigated. Liproxstatin­1 inhibited K562 cell proliferation in a dose­ and time­dependent manner. RNA sequencing revealed several pathways that were affected by liproxstatin­1, such as the G1/S transition of the mitotic cell cycle and extrinsic or intrinsic apoptotic signaling pathways. The results of flow cytometry indicated that liproxstatin­1 arrests the cell cycle at the G1 phase, and even at the G2/M phase. p21WAF1/CIP1, a cyclin­dependent kinase inhibitor, was upregulated. It was also determined that liproxstatin­1 induced BAX and TNF­α expression, which was accompanied by cleavage of caspase­3 and PARP. The caspase­3­specific inhibitor z­DEVD­FMK rescued some of the apoptotic cells. Interestingly, K562 cells were characterized by swelling and plasma membrane rupture when treated with a high concentration of liproxstatin­1, which was inconsistent with the typical apoptotic appearance. Thus, it was hypothesized that apoptosis­mediated pyroptosis occurs during liproxstatin­1­induced cell death. The expression of the hallmark of pyroptosis, the cleaved N­terminal GSDME, increased. Additionally, it was observed that endoplasmic reticulum stress and autophagy were involved in liproxstatin­1­induced cell death. Collectively, liproxstatin­1 induced cell cycle arrest, apoptosis, and caspase­3/GSDME­dependent secondary pyroptosis in K562 leukemia cells, which provides new hope for the treatment of leukemia.


Assuntos
Leucemia , Piroptose , Apoptose , Caspase 3/metabolismo , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Humanos , Células K562 , Leucemia/tratamento farmacológico , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Quinoxalinas , Compostos de Espiro
9.
Inorg Chem ; 61(16): 6083-6093, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35404597

RESUMO

Selective removal of carbonyl sulfide (COS) and hydrogen sulfide (H2S) is the key step for natural gas desulfurization due to the highly toxic and corrosive features of these gaseous sulfides, and efficient and stable desulfurizers are urgently needed in the industry. Herein, we report a class of nitrogen-functionalized, hierarchically lamellar carbon frameworks (N-HLCF-xs), which are obtained from the structural transformation of Zn zeolitic imidazolate frameworks via controllable carbonization. The N-HLCF-xs possess the desirable characteristics of large Brunauer-Emmett-Teller surface areas (645-923 m2/g), combined primary three-dimensional microporosity and secondary two-dimensional lamellar microstructure, and high density of nitrogen base sites with enhanced pyridine ratio (17.52 wt %, 59.91%). The anchored nitrogen base sites in N-HLCF-xs show improved accessibility, which boosts their interaction with acidic COS and H2S. As expected, N-HLCF-xs can be employed as multifunctional and efficient desulfurizers for selective removal of COS and H2S from natural gas. COS was first transformed into H2S via catalytic hydrolysis, and the produced H2S was then captured and separated and catalyzed oxidation into elemental sulfur. The above continuous processes can be achieved with solo N-HLCF-xs, giving extremely high efficiencies and reusability. Their integrated desulfurization performance was better than many desulfurizers used in the area, such as activated carbon, ß zeolite, MIL-101(Fe), K2CO3/γ-Al2O3, and FeOx/TiO2.

10.
Small ; 17(46): e2104939, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34668315

RESUMO

Efficient catalytic elimination of hydrogen sulfide (H2 S) with high activity and durability in nature gas and blast-furnace gas is very critical for both fundamental catalytic research and applied environmental chemistry. Herein, atomically dispersed Co atom catalysts with Co-N4 sites that can transform H2 S into S with conversion rate of ≈100% are designed and prepared. The representative 4Co-N/NC achieves a sulfur yield of nearly 100% and TOF(Co) of 869 h-1 at 180 °C. Importantly, remarkable long-term durability is achieved as well, with no obvious loss of catalytic activity in the run of 460 h, outperforming most of the reported catalysts. The short bond length and strong cooperation of Co-N are beneficial to improve the structural stability of the Co-N4 centers, and significantly enhanced resistance of water and sulfation over single-atom Co-catalyst. The present mechanism involves the stepwise hydrogen transfer process via the adsorbed *HOO and *HS intermediates.

11.
ACS Appl Mater Interfaces ; 13(32): 38239-38247, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34342420

RESUMO

The difficulty of adsorption and activation of CO2 at the catalytic site and rapid recombination of photogenerated charge carriers severely restrict the CO2 conversion efficiency. Here, we fabricate a novel alkaline Co(OH)2-decorated ultrathin 2D titanic acid nanosheet (H2Ti6O13) catalyst, which rationally couples the structural and functional merits of ultrathin 2D supports with catalytically active Co species. Alkaline Co(OH)2 beneficially binds and activates CO2 molecules, while monolayer H2Ti6O13 acts as an electron relay that bridges a photosensitizer with Co(OH)2 catalytic sites. As such, photoexcited charges can be efficiently channeled from light absorbers to activated CO2 molecules through the ultrathin hybrid Co(OH)2/H2Ti6O13 composite, thereby producing syngas (CO/H2 mixture) from photoreduction of CO2. High evolution rates of 56.5 µmol h-1 for CO and 59.3 µmol h-1 for H2 are achieved over optimal Co(OH)2/H2Ti6O13 by visible light illumination. In addition, the CO/H2 ratio can be facilely tuned from 1:1 to 1:2.4 by changing the Co(OH)2 content, thus presenting a feasible approach to controllably synthesize different H2/CO mixtures for target applications.

12.
J Hazard Mater ; 411: 125180, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33858115

RESUMO

In the present work, we report a facile oxalate-derived hydrothermal method to fabricate α-, ß- and δ-MnO2 catalysts with hierarchically porous structure and study the phase-dependent behavior for selective oxidation of H2S over MnO2 catalysts. It was disclosed that the oxygen vacancy, reducibility and acid property of MnO2 are essentially determined by the crystalline phase. Systematic experiments demonstrate that δ-MnO2 is superior in active oxygen species, activation energy and H2S adsorption capacity among the prepared catalysts. As a consequence, δ-MnO2 nanosphere with a hierarchically porous structure shows high activity and stability with almost 100% H2S conversion and sulfur selectivity at 210 °C, better than majority of reported Mn-based materials. Meanwhile, hierarchically porous structure of δ-MnO2 nanosphere alleviates the generation of by-product SO2 and sulfate, promoting the adoptability of Mn-based catalysts in industrial applications.

13.
ACS Appl Mater Interfaces ; 10(48): 41415-41421, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30383354

RESUMO

Seeking efficient visible-light-driven photocatalysts for water splitting to produce H2 has attracted much attention. Chemical doping is an effective strategy to enhance photocatalytic performance. Herein, we reported phosphorus-doped covalent triazine-based frameworks (CTFs) for photocatalytic H2 evolution. Phosphorus-doped CTFs were fabricated by a facile thermal treatment using easily available red phosphorus as the external phosphorus species. The introduction of phosphorus atoms into the frameworks modified the optical and electronic property of CTFs, thus promoting the generation, separation, and migration of photoinduced electron-hole pairs. Consequently, the photocatalytic H2-production efficiency of phosphorus-doped CTFs was greatly improved, which was 4.5, 3.9, and 1.8 times as high as that of undoped CTFs and phosphorus-doped g-C3N4 calcined from melamine and urea, respectively.

14.
Dalton Trans ; 47(20): 7077-7082, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29744507

RESUMO

Development of visible-light-induced and rapid water disinfection is of significant importance. Covalent triazine-based frameworks (CTFs) with pre-designable structures and favorable semiconductive behaviors hold great promise for photocatalytic water disinfection. Here, we report an Ag/AgBr/CTF composite with a layered structure, which serves as an efficient photocatalyst for rapid water disinfection. Water disinfection with >99.99% inactivation of Escherichia coli within 12 min was achieved by using a small amount of Ag/AgBr/CTF under visible light irradiation. The inactivation efficiency of Ag/AgBr/CTF was ∼10 times better than that of bare Ag/AgBr. Rapid water disinfection by the Ag/AgBr/CTF composite mainly results from the greatly improved generation of reactive oxygen species through the synergistic effects among the three components and the affinity of CTF to the cell wall of bacteria.

15.
Inorg Chem ; 57(11): 6641-6647, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29775041

RESUMO

Noble metal nanoparticles have attracted considerable attention due to their useful capabilities as heterogeneous catalysts. However, they are usually prepared using various organic stabilizing agents that negatively affect their catalytic activities. Herein, we report a facile, clean, and effective method for synthesizing supported ultrafine noble metal nanoparticles by utilizing the reductive property of a new pyrochlore oxide: Sn1.06Nb2O5.59F0.97 (SnNbOF). Ultrafine Au, Pd, and Pt nanoparticles or clusters are homogeneously distributed on the SnNbOF surface. In addition, the atomic cavities and ion-exchange properties of pyrochlore-type SnNbOF can facilitate the synthesis of atomic Ag dispersed within the framework of SnNbOF. Noble metal-SnNbOF hybrids can be obtained in one step at room temperature, and no foreign reducing agents or stabilizing organics are required for the synthesis. We also show that the fabricated hybrids exhibit promising photocatalytic properties for ethylene oxidation and CO2 reduction.

16.
ChemSusChem ; 11(6): 1108-1113, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29405652

RESUMO

MoS2 quantum dots (QDs)-modified covalent triazine-based framework (MoS2 /CTF) composites are synthesized through an in situ photodeposition method. MoS2 QDs are well distributed and stabilized on the layers of CTFs by coordination of the frameworks to MoS2 . The QDs-sheet interactions between MoS2 and CTFs facilitate interfacial charge transfer and separation. As a consequence, the composites exhibit outstanding photocatalytic activity and stability for hydrogen evolution under visible light irradiation (λ≥420 nm), that exceed those over pristine CTFs and MoS2 -modified g-C3 N4 (MoS2 /g-C3 N4 ) composite, making them promising materials for solar energy conversion.

17.
Dalton Trans ; 46(40): 13935-13942, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28972230

RESUMO

A hybrid of CdS/HCa2Nb3O10 ultrathin nanosheets was synthesized successfully through a multistep approach. The structures, constitutions, morphologies and specific surface areas of the obtained CdS/HCa2Nb3O10 were characterized well by XRD, XPS, TEM/HRTEM and BET, respectively. The TEM and BET results demonstrated that the unique structural features of CdS/HCa2Nb3O10 restrained the aggregation of CdS nanoparticles as well as the restacking of nanosheets effectively. HRTEM showed that CdS nanocrystals of about 25-30 nm were firmly anchored on HCa2Nb3O10 nanosheets and a tough heterointerface between CdS and the nanosheets was formed. Efficient interfacial charge transfer from CdS to HCa2Nb3O10 nanosheets was also confirmed by EPR and photocurrent responses. The photocatalytic activity tests (λ > 400 nm) showed that the optimal hydrogen evolution activity of CdS/HCa2Nb3O10 was about 4 times that of the bare CdS, because of the efficient separation of photo-generated carriers.

18.
Nanoscale ; 9(38): 14654-14663, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28937167

RESUMO

Creating two-dimensional (2D) crystal-metal heterostructures with an ultrathin thickness has spurred increasing research endeavors in catalysis because of its fascinating opportunities in tuning the electronic state at the surface and enhancing the chemical reactivity. Here we report a novel and facile Nb4+-assisted strategy for the in situ growth of highly dispersed Pd nanoparticles (NPs) on monolayer HNb3O8 nanosheets (HNb3O8 NS) constituting a 2D Pd/HNb3O8 NS heterostructure composite without using extra reducing agents and stabilizing agents. The Pd NP formation is directed via a redox reaction between an oxidative Pd salt precursor (H2PdCl4) and reductive unsaturated surface metal (Nb4+) sites induced by light irradiation on monolayer HNb3O8 NS. The periodic arrangement of metal Nb nodes on HNb3O8 NS leads to a homogeneous distribution of Pd NPs. Density functional theory (DFT) calculations reveal that the direct redox reaction between the Nb4+ and Pd2+ ions leads to a strong chemical interaction between the formed Pd metal NPs and the monolayer HNb3O8 support. Consequently, the as-obtained Pd/HNb3O8 composite serves as a highly efficient bifunctional catalyst in both heterogeneous thermocatalytic and photocatalytic selective reduction of aromatic nitro compounds in water under ambient conditions. The achieved high activity originates from the unique 2D nanosheet configuration and in situ Pd incorporation, which leads to a large active surface area, strong metal-support interaction and enhanced charge transport capability. Moreover, this facile Nb4+-assisted synthetic route has demonstrated to be general, which can be applied to load other metals such as Au and Pt on monolayer HNb3O8 NS. It is anticipated that this work can extend the facile preparation of noble metal/nanosheet 2D heterostructures, as well as promote the simultaneous capture of duple renewable thermal and photon energy sources to drive an energy efficient catalytic process.

19.
Chem Commun (Camb) ; 53(61): 8604-8607, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28718481

RESUMO

Monolayer Bi2MoO6 nanosheets have been successfully prepared for the first time via a bottom-top approach with surfactant assistance, and show 8 times higher activity than bulk Bi2MoO6 for the selective oxidation of benzyl alcohol. Ultrafast charge separation and more acid-base active sites on the monolayer nanosheets are considered to be responsible for the robust photoactivity.

20.
Nanomaterials (Basel) ; 7(2)2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28336859

RESUMO

TiO2 hollow spheres modified with spatially separated Ag species and RuO2 cocatalysts have been prepared via an alkoxide hydrolysis-precipitation method and a facile impregnation method. High-resolution transmission electron microscopy studies indicate that Ag species and RuO2 co-located on the inner and outer surface of TiO2 hollow spheres, respectively. The resultant catalysts show significantly enhanced activity in photocatalytic hydrogen production under simulated sunlight attributed to spatially separated Ag species and RuO2 cocatalysts on TiO2 hollow spheres, which results in the efficient separation and transportation of photogenerated charge carriers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA