Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artif Intell Med ; 141: 102554, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37295898

RESUMO

Secondary hypertension is associated with higher risks of target organ damage and cardiovascular and cerebrovascular disease events. Early aetiology identification can eliminate aetiologies and control blood pressure. However, inexperienced doctors often fail to diagnose secondary hypertension, and comprehensively screening for all causes of high blood pressure increases health care costs. To date, deep learning has rarely been involved in the differential diagnosis of secondary hypertension. Relevant machine learning methods cannot combine textual information such as chief complaints with numerical information such as the laboratory examination results in electronic health records (EHRs), and the use of all features increases health care costs. To reduce redundant examinations and accurately identify secondary hypertension, we propose a two-stage framework that follows clinical procedures. The framework carries out an initial diagnosis process in the first stage, on which basis patients are recommended for disease-related examinations, followed by differential diagnoses of different diseases based on the different characteristics observed in the second stage. We convert the numerical examination results into descriptive sentences, thus blending textual and numerical characteristics. Medical guidelines are introduced through label embedding and attention mechanisms to obtain interactive features. Our model was trained and evaluated using a cross-sectional dataset containing 11,961 patients with hypertension from January 2013 to December 2019. The F1 scores of our model were 0.912, 0.921, 0.869 and 0.894 for primary aldosteronism, thyroid disease, nephritis and nephrotic syndrome and chronic kidney disease, respectively, which are four kinds of secondary hypertension with high incidence rates. The experimental results show that our model can powerfully use the textual and numerical data contained in EHRs to provide effective decision support for the differential diagnosis of secondary hypertension.


Assuntos
Aprendizado Profundo , Hipertensão , Humanos , Diagnóstico Diferencial , Estudos Transversais , Hipertensão/diagnóstico , Hipertensão/epidemiologia , Aprendizado de Máquina
2.
Front Cardiovasc Med ; 9: 952089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035939

RESUMO

Background: Current electrocardiogram (ECG) criteria of left ventricular hypertrophy (LVH) have low sensitivity. Deep learning (DL) techniques have been widely used to detect cardiac diseases due to its ability of automatic feature extraction of ECG. However, DL was rarely applied in LVH diagnosis. Our study aimed to construct a DL model for rapid and effective detection of LVH using 12-lead ECG. Methods: We built a DL model based on convolutional neural network-long short-term memory (CNN-LSTM) to detect LVH using 12-lead ECG. The echocardiogram and ECG of 1,863 patients obtained within 1 week after hospital admission were analyzed. Patients were evenly allocated into 3 sets at 3:1:1 ratio: the training set (n = 1,120), the validation set (n = 371) and the test set 1 (n = 372). In addition, we recruited 453 hospitalized patients into the internal test set 2. Different DL model of each subgroup was developed according to gender and relative wall thickness (RWT). Results: The LVH was predicted by the CNN-LSTM model with an area under the curve (AUC) of 0.62 (sensitivity 68%, specificity 57%) in the test set 1, which outperformed Cornell voltage criteria (AUC: 0.57, sensitivity 48%, specificity 72%) and Sokolow-Lyon voltage (AUC: 0.51, sensitivity 14%, specificity 96%). In the internal test set 2, the CNN-LSTM model had a stable performance in predicting LVH with an AUC of 0.59 (sensitivity 65%, specificity 57%). In the subgroup analysis, the CNN-LSTM model predicted LVH by 12-lead ECG with an AUC of 0.66 (sensitivity 72%, specificity 60%) for male patients, which performed better than that for female patients (AUC: 0.59, sensitivity 50%, specificity 71%). Conclusion: Our study established a CNN-LSTM model to diagnose LVH by 12-lead ECG with higher sensitivity than current ECG diagnostic criteria. This CNN-LSTM model may be a simple and effective screening tool of LVH.

3.
Front Cardiovasc Med ; 9: 797207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360023

RESUMO

Early diagnosis of acute ST-segment elevation myocardial infarction (STEMI) and early determination of the culprit vessel are associated with a better clinical outcome. We developed three deep learning (DL) models for detecting STEMIs and culprit vessels based on 12-lead electrocardiography (ECG) and compared them with conclusions of experienced doctors, including cardiologists, emergency physicians, and internists. After screening the coronary angiography (CAG) results, 883 cases (506 control and 377 STEMI) from internal and external datasets were enrolled for testing DL models. Convolutional neural network-long short-term memory (CNN-LSTM) (AUC: 0.99) performed better than CNN, LSTM, and doctors in detecting STEMI. Deep learning models (AUC: 0.96) performed similarly to experienced cardiologists and emergency physicians in discriminating the left anterior descending (LAD) artery. Regarding distinguishing RCA from LCX, DL models were comparable to doctors (AUC: 0.81). In summary, we developed ECG-based DL diagnosis systems to detect STEMI and predict culprit vessel occlusion, thus enhancing the accuracy and effectiveness of STEMI diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA