Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 289: 115051, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35101573

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Until now, inflammatory pain, especially ones with central sensitization in the spinal cord, is far from effectively treated. Yu-Xue-Bi Tablets (YXB) is a patented medicine, which has been widely applied for inflammatory pain. However, its therapeutic characteristics and mechanism remain unknown. AIM OF THE STUDY: This study is designed to evaluate the analgesic characteristics and explore the underlying mechanism of YXB in the inflammatory pain model induced by Complete Freund's Adjuvant (CFA). MATERIALS AND METHODS: The analgesic effects were measured by Von Frey test. The expression of calcitonin gene-related peptide (CGRP) was quantified by immunofluorescence. The expression of immune factors was analyzed via Luminex assay. The further quantifications of C-C Motif chemokine ligand 3 (CCL3) were verified by Enzyme-linked immunosorbent assay (ELISA). The transmigration of macrophage and activation of microglia were evaluated by immunofluorescence. Spinal injections of purified CCL3, CCR1 antagonist (J113863) and CCR5 antagonist (Maraviroc) were used to clarify roles of CCL3 assumed in the pharmacological mechanism of YXB. RESULTS: In CFA mice, YXB ameliorated the mechanical allodynia in dose and time dependent way, suppressed the central sensitization in dose dependent way. In the L5 spinal cord, YXB downregulated the expression of macrophage M1 pro-inflammatory factors TNFRI and CCL3, inhibited the transmigration of circulating macrophage and the activation of microglia. Purified CCL3 led to the transmigration of macrophage, activation of microglia, central sensitization, and mechanical allodynia in the Sham mice. Inhibitors of CCR1 and CCR5 attenuated above symptoms in CFA mice. Purified CCL3 blocked YXB mediated down regulation of CCL3, inhibition of macrophage transmigration, but not activation of microglia. CONCLUSION: YXB exerts the analgesic effects by inhibiting CCL3-mediated peripheral macrophage transmigrate into spinal cord. This study provided a novel approach for inflammatory pain treatment and new insight into the pharmacological action of YXB.


Assuntos
Analgésicos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Macrófagos/metabolismo , Dor/tratamento farmacológico , Analgésicos/administração & dosagem , Animais , Movimento Celular/efeitos dos fármacos , Quimiocina CCL3/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/administração & dosagem , Hiperalgesia/tratamento farmacológico , Inflamação/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos ICR , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Comprimidos , Fatores de Tempo
2.
Zhongguo Zhong Yao Za Zhi ; 47(24): 6730-6740, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36604923

RESUMO

Chronic inflammatory pain is mainly manifested by peripheral sensitization. Baimai Ointment(BMO), a classical Tibetan medicine for external use, has good clinical efficacy in the treatment of chronic inflammatory pain, while its pharmacodynamics and mechanism for relieving peripheral sensitization remain unclear. This study established an animal model of chronic inflammatory pain induced by complete Freund's adjuvant to explore the mechanism of BMO in the treatment of chronic inflammatory pain by behavioral test, side effect assessment, network analysis, and experimental verification. The pharmacodynamics experiment showed that BMO increased the thresholds of mechanical pain sensitivity and thermal radiation pain sensitivity of chronic inflammatory pain mice in a dose-dependent manner, and had inhibitory effect on foot swelling, inflammatory mediator, and the expression of transient receptor potential vanilloid-1(TRPV1) and transient receptor potential A1(TRPA1). The results of body weight monitoring, pain sensitivity threshold detection in normal mice, rotarod performance test, and forced swimming test showed that BMO had no obvious toxic or side effect. The network analysis of 51 candidate active molecules selected according to the efficacy of BMO, content of main components, and ADME parameters showed that the inhibitory effect of BMO on chronic inflammatory pain was associated with the core regulatory elements of tumor necrosis factor(TNF) and T cell receptor signaling pathways. BMO down-regulated the protein levels of mitogen-activated protein kinase 14(MAPK14), MAPK1, and prostaglandin-endoperoxide synthase 2(PTGS2), and up-regulated the phosphorylation le-vel of glycogen synthase kinase 3 beta(GSK3 B) in the plantar tissue of mice. In conclusion, BMO can effectively relieve peripheral sensitization of chronic inflammatory pain without inducing tolerance and obvious toxic and side effects. The relevant mechanism may be related to the regulation of BMO on core regulatory elements of TNF and T cell receptor signaling pathways in surrounding tissues.


Assuntos
Quinase 3 da Glicogênio Sintase , Hiperalgesia , Camundongos , Animais , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Quinase 3 da Glicogênio Sintase/efeitos adversos , Quinase 3 da Glicogênio Sintase/metabolismo , Dor/tratamento farmacológico , Dor/induzido quimicamente , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Canais de Cátion TRPV/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA