Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 616: 509-519, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35228047

RESUMO

The ternary transition metal oxides are promising anode material for lithium-ion batteries (LIBs). However, their practical applications are greatly hindered by the poor conductivity and huge volume changes. To solve the issues, urchin-like inverse spinel manganese (Mn) doped NiCo2O4 hierarchical microspheres were fabricated through a facile hydrothermal approach and subsequent annealing treatment. The as-obtained Mn-doped NiCo2O4 hold microsphere and sharp fiber-shaped needle multilevel nanoscale architecture, which effectively shortened Li ions (Li+) transmission path and improved the conductivity. In addition, the hierarchical urchin-like Mn-doped NiCo2O4 synthesized at annealing temperature (600 °C) manifested a larger capacity and better cycling performance by controlling the crystallinities and morphologies. As expected, it displays an outstanding cycling performance with a reversible capacity of about 945 mAh g-1 after 500 cycles at 2000 mA g-1. The kinetic analysis and galvanostatic intermittent titration technique (GITT) testing also verifies the superior pseudocapacitance contribution and fast elevated ion migration of Li+. Our work provides a promising design to develop suitable anode materials based on transition metal oxides for high-performance LIBs.

2.
Small ; 17(51): e2102899, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34643040

RESUMO

Carbon nanomaterials have elicited much research interest in the energy storage field, but most of them cannot be used at high temperatures. Thus, a supercapacitor with high energy and desired stability at high temperatures is urgently required. Herein, BCN nanotubes (BCNNTs) with excellent performance at high temperatures are generated on carbon fibers by optimizing the ratio of B and N. The nanotubes' morphology can effectively alleviate the structural damage caused by the rapid adsorption/desorption of the electrolyte during long-time charge/discharge cycles at high temperatures, thus improving the high-temperature cycle stability. The symmetric supercapacitors that are assembled with the binder-free BCNNT electrode in 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM·BF4 ) exhibited a high areal capacitance of 177.1 mF cm-2 at a current density of 5 mA cm-2 , and capacitance retention is maintained up to 86.1% for 5000 cycles at 100 °C. Moreover, the flexible supercapacitor based on BCNNTs in poly(vinylidenefluoride hexafluoropropylene)/EMIM·BF4 /succinonitrile gel electrolyte also exhibits good volumetric capacitance (1.98 mWh cm-3 at a current density of 5 mA cm-2 ) and cycling stability (92.6% retention after 200 charge/discharge cycles) at a temperature of 100 °C. This work shows that binder-free BCNNTs are promising materials for high-temperature flexible energy storage devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA