RESUMO
Renal fibrosis is a common pathway involved in the progression of various chronic kidney to end-stage diseases, posing a substantial global public health challenge in the search for effective and safe treatments. This study investigated the effects and mechanisms of sacha inchi shell polysaccharide (SISP) on renal fibrosis induced by a high-salt diet (HSD) in mice. By analysing kidney-related protein pathways and the structure of gut microbiota, we found that SISP significantly reduced urinary protein levels induced by a HSD from 41.08 to 22.95 µg/mL and increased urinary creatinine from 787.43 to 1294.50 µmol/L. It reduced renal interstitial collagen fibres by 11.30 %, thereby improving the kidney function. SISP lowered the mRNA expression of TGF-B1, fibronectin, α-SMA, Smad2/3, and TGFBRII, leading to decreased protein levels of TGF-ß1, p-Smad2/3, p-TGFßRII, fibronectin, α-SMA, p-Smad2/3/Smad2/3, and p-TGFßRII/TGFßRII. These changes blocked downstream transcription in the TGF-ß1/Smad signalling pathway, thereby attenuating renal fibrosis in HSD mice. In addition, SISP altered the intestinal flora imbalance in HSD mice by reducing the relative abundance of the genera, Akkermansia, Faecalibaculum, and unidentified_Ruminococcaceae, and reversing the decline in the levels of the genera, Lactobacillus and Bacteroides. In conclusion, SISP is a promising nutraceutical for renal fibrosis management.
Assuntos
Fibrose , Microbioma Gastrointestinal , Polissacarídeos , Transdução de Sinais , Proteínas Smad , Fator de Crescimento Transformador beta1 , Animais , Polissacarídeos/farmacologia , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Masculino , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/patologia , Nefropatias/metabolismoRESUMO
OBJECTIVE: A total of 5,200 pregnant women in Zhaoqing city, Guangdong Province, were screened to identify spinal muscular atrophy (SMA) mutation carriers to guide the prevention of SMA and prevent the birth of children with SMA. METHODS: Exons 7 and 8 (E7 and E8) of the survival motor neuron (SMN) 1 gene were detected in women using real-time fluorescence quantitative polymerase chain reaction. SMN1 and SMN2 copy numbers in those who were initially identified as carriers were verified via targeted region capture and next-generation sequencing. When both partners were identified as carriers, prenatal diagnosis of the fetus was performed. RESULTS: Among the screened women, 75 SMA carriers (71 cases had both E7 and E8 heterozygous deletions and 4 cases only had an E7 heterozygous deletion) were identified, with a carrier frequency of 1.44% (95% confidence interval: 1.31-1.65%). Three couples where both spouses were identified as SMA carriers, and their three fetuses were subjected to prenatal genetic analysis. Of the three, one had homozygous deletions of E7 and E8 and the other two had heterozygous deletions of E7 and E8. After a detailed prenatal consultation, the former couple decided to terminate the pregnancy. CONCLUSION: Through screening and prenatal diagnosis of pregnant women in Zhaoqing city, Guangdong Province, the incidence of SMA can be reduced, prevention of birth defects can be improved, incidence of birth defects can be effectively minimized.