RESUMO
Glucagon-like peptide 1 (GLP1), which is mainly processed and cleaved from proglucagon in enteroendocrine cells (EECs) of the intestinal tract, acts on the GLP1 receptor in pancreatic cells to stimulate insulin secretion and to inhibit glucagon secretion. However, GLP1 processing is not fully understood. Here, we show that reticulon 4B (Nogo-B), an endoplasmic reticulum (ER)-resident protein, interacts with the major proglucagon fragment of proglucagon to retain proglucagon on the ER, thereby inhibiting PCSK1-mediated cleavage of proglucagon in the Golgi. Intestinal Nogo-B knockout in male type 2 diabetes mellitus (T2DM) mice increases GLP1 and insulin levels and decreases glucagon levels, thereby alleviating pancreatic injury and insulin resistance. Finally, we identify aberrantly elevated Nogo-B expression and inhibited proglucagon cleavage in EECs from diabetic patients. Our study reveals the subcellular regulatory processes involving Nogo-B during GLP1 production and suggests intestinal Nogo-B as a potential therapeutic target for T2DM.
Assuntos
Diabetes Mellitus Tipo 2 , Retículo Endoplasmático , Peptídeo 1 Semelhante ao Glucagon , Proteínas Nogo , Proglucagon , Pró-Proteína Convertase 1 , Animais , Humanos , Masculino , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Retículo Endoplasmático/metabolismo , Células Enteroendócrinas/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Complexo de Golgi/metabolismo , Células HEK293 , Insulina/metabolismo , Resistência à Insulina , Intestinos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nogo/metabolismo , Proteínas Nogo/genética , Proglucagon/metabolismo , Proglucagon/genética , Pró-Proteína Convertase 1/metabolismo , Pró-Proteína Convertase 1/genética , Ligação Proteica , ProteóliseRESUMO
INTRODUCTION: Polo-like kinases (PLKs) have five isoforms, all of which play crucial roles in cell cycle and cell proliferation, offering opportunities for drug design and treatment of cancers and other related diseases. Notably, PLK1 and PLK4 have been extensively investigated as cancer drug targets. One distinctive feature of PLKs is the presence of a unique polo-box domain (PBD), which regulates kinase activity and subcellular localization. This provides possibilities for specifically targeting PLKs. AREA COVERED: This article provides an overview of the roles of PLKs in various cancers and related diseases, as well as the drug development involving PLKs, with a particular focus on PLK1 and PLK4. It summarizes the PLK1 and PLK4 inhibitors that have been disclosed in patents or literature (from 2018 - present), which were sourced from SciFinder and WIPO database. EXPERT OPINION: After two decades of drug development on PLKs, several drugs progressed into clinical trials for the treatment of many cancers; however, none of them has been approved yet. Further elucidating the mechanisms of PLKs and identifying and developing highly selective ATP-competitive inhibitors, highly potent drug-like PBD inhibitors, degraders, etc. may provide new opportunities for cancer therapy and the treatment for several nononcologic diseases. PLKs inhibition-based combination therapies can be another helpful strategy.
Assuntos
Antineoplásicos , Proteínas de Ciclo Celular , Desenho de Fármacos , Desenvolvimento de Medicamentos , Neoplasias , Patentes como Assunto , Quinase 1 Polo-Like , Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Humanos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/enzimologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Animais , Antineoplásicos/farmacologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/metabolismo , Proliferação de Células/efeitos dos fármacos , Terapia de Alvo MolecularRESUMO
Thrombo-inflammation is closely associated with a few severe cardiovascular and infectious diseases. Factor XIIa (FXIIa) in the intrinsic coagulation pathway plays a pivotal role in the development of thrombo-inflammation and its inhibition has emerged as a potential therapeutic approach for thrombo-inflammatory disorders. Nonetheless, as of now, few small-molecule FXIIa inhibitors have demonstrated notable effectiveness against thrombo-inflammation, with none progressing into clinical stages. Herein, we present potent, covalent, reversible, and selective small-molecule FXIIa inhibitors such as 4a and 4j obtained through structure-based drug design. Compounds 4a and 4j showed significant anticoagulation and substantial anti-inflammatory effects in vitro, coupled with exceptional plasma stability. Furthermore, in carrageenan-induced thrombosis models, 4a and 4j demonstrated remarkable dual antithrombotic and anti-inflammatory activity when administered orally. Compound 4j exhibited a favorable safety profile without obvious tissue toxicity in mice, suggesting its potential as an oral therapeutic option for thrombo-inflammation.
Assuntos
Fator XIIa , Trombose , Animais , Trombose/tratamento farmacológico , Camundongos , Humanos , Fator XIIa/antagonistas & inibidores , Fator XIIa/metabolismo , Administração Oral , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacocinética , Relação Estrutura-Atividade , Carragenina , Descoberta de Drogas , Inflamação/tratamento farmacológico , Masculino , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Anticoagulantes/química , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Fibrinolíticos/química , Disponibilidade BiológicaRESUMO
Pancreatic cancer (PC) is a lethal disease and associated with metabolism dysregulation. Nogo-B is related to multiple metabolic related diseases and types of cancers. However, the role of Nogo-B in PC remains unknown. In vitro, we showed that cell viability and migration was largely reduced in Nogo-B knockout or knockdown cells, while enhanced by Nogo-B overexpression. Consistently, orthotopic tumor and metastasis was reduced in global Nogo knockout mice. Furthermore, we indicated that glucose enhanced cell proliferation was associated to the elevation expression of Nogo-B and nuclear factor κB (NF-κB). While, NF-κB, glucose transporter type 1 (GLUT1) and sterol regulatory element-binding protein 1 (SREBP1) expression was reduced in Nogo-B deficiency cells. In addition, we showed that GLUT1 and SREBP1 was downstream target of NF-κB. Therefore, we demonstrated that Nogo deficiency inhibited PC progression is regulated by the NF-κB/GLUT1 and SREBP1 pathways, and suggested that Nogo-B may be a target for PC therapy.
RESUMO
Lung cancer is the most common cause of cancer-related deaths worldwide and is caused by multiple factors, including high-fat diet (HFD). CD36, a fatty acid receptor, is closely associated with metabolism-related diseases, including cardiovascular disease and cancer. However, the role of CD36 in HFD-accelerated non-small-cell lung cancer (NSCLC) is unclear. In vivo, we fed C57BL/6J wild-type (WT) and CD36 knockout (CD36-/-) mice normal chow or HFD in the presence or absence of pitavastatin 2 weeks before subcutaneous injection of LLC1 cells. In vitro, A549 and NCI-H520 cells were treated with free fatty acids (FFAs) to mimic HFD situation for exploration the underlying mechanisms. We found that HFD promoted LLC1 tumor growth in vivo and that FFAs increased cell proliferation and migration in A549 and NCI-H520 cells. The enhanced cell or tumor growth was inhibited by the lipid-lowering agent pitavastatin, which reduced lipid accumulation. More importantly, we found that plasma soluble CD36 (sCD36) levels were higher in NSCLC patients than those in healthy ones. Compared to that in WT mice, the proliferation of LLC1 cells in CD36-/- mice was largely suppressed, which was further repressed by pitavastatin in HFD group. At the molecular level, we found that CD36 inhibition, either with pitavastatin or plasmid, reduced proliferation- and migration-related protein expression through the AKT/mTOR pathway. Taken together, we demonstrate that inhibition of CD36 expression by pitavastatin or other inhibitors may be a viable strategy for NSCLC treatment.
Assuntos
Antígenos CD36 , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ácidos Graxos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt , Antígenos CD36/genéticaRESUMO
Triple negative breast cancer (TNBC) is regarded as one of the most aggressive forms of breast cancer. Hydroxypropyl-ß-cyclodextrin (HP-ß-CD) has been used as a therapeutic agent for Niemann-Pick disease Type C (NPC). However, the exact actions and mechanisms of HP-ß-CD on TNBC are not fully understood. To examine the influence of HP-ß-CD on the proliferation and migration of TNBC cell lines, particularly 4T1 and MDA-MB-231 cells, a range of assays, including MTT, scratch, cell cycle, and clonal formation assays, were performed. Furthermore, the effectiveness of HP-ß-CD in the treatment of TNBC was assessed in vivo using a 4T1 tumor-bearing BALB/c mouse model. We demonstrated the anti-proliferation and anti-migration effect of HP-ß-CD on TNBC both in vitro and in vivo. High cholesterol diet can attenuate HP-ß-CD-inhibited TNBC growth. Mechanistically, HP-ß-CD reduced tumor cholesterol levels by increasing ABCA1 and ABCG1-mediated cholesterol reverse transport. HP-ß-CD promoted the infiltration of T cells into the tumor microenvironment (TME) and improved exhaustion of CD8+ T cells via reducing immunological checkpoint molecules expression. Additionally, HP-ß-CD inhibited the recruitment of tumor associated macrophages to the TME via reducing CCL2-p38MAPK-NF-κB axis. HP-ß-CD also inhibited the epithelial mesenchymal transition (EMT) of TNBC cells mediated by the TGF-ß signaling pathway. In summary, our study suggests that HP-ß-CD effectively inhibited the proliferation and metastasis of TNBC, highlighting HP-ß-CD may hold promise as a potential antitumor drug.
Assuntos
Neoplasias de Mama Triplo Negativas , Camundongos , Animais , Humanos , 2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Linfócitos T CD8-Positivos/metabolismo , NF-kappa B , Colesterol/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Movimento Celular , Microambiente TumoralRESUMO
Licorice is a traditional and versatile herbal medicine and food. Glabridin (Gla) is a kind of isoflavone extracted from the licorice root, which has anti-obesity, anti-atherosclerotic, and antioxidative effects. Alcoholic liver disease (ALD) is a widespread liver disease induced by chronic alcohol consumption. However, studies demonstrating the effect of Gla on ALD are rare. The research explored the positive effect of Gla in C57BL/6J mice fed by the Lieber-DeCarli ethanol mice diet and HepG2 cells treated with ethanol. Gla alleviated ethanol-induced liver injury, including reducing liver vacuolation and lipid accumulation. The serum levels of inflammatory cytokines were decreased in the Gla-treated mice. The reactive oxygen species and apoptosis levels were attenuated and antioxidant enzyme activity levels were restored in ethanol-induced mice by Gla treatment. In vitro, Gla reduced ethanol-induced cytotoxicity, nuclear factor kappa B (NF-κB) nuclear translocation, and enhanced nuclear factor (erythroid-derived 2)-like 2 (Nrf2) nuclear translocation. Anisomycin (an agonist of p38 MAPK) eliminated the positive role of Gla on ethanol-caused oxidative stress and inflammation. On the whole, Gla can alleviate alcoholic liver damage via the p38 MAPK/Nrf2/NF-κB pathway and may be used as a novel health product or drug to potentially alleviate ALD.
Assuntos
Inflamação , Hepatopatias Alcoólicas , Estresse Oxidativo , Transdução de Sinais , Animais , Feminino , Humanos , Camundongos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Etanol/toxicidade , Inflamação/tratamento farmacológico , Hepatopatias Alcoólicas/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Diabetes-related vascular complications include diabetic cardiovascular diseases (CVD), diabetic nephropathy (DN) and diabetic retinopathy, etc. DN can promote the process of end-stage renal disease. On the other hand, atherosclerosis accelerates kidney damage. It is really an urge to explore the mechanisms of diabetes-exacerbated atherosclerosis as well as new agents for treatment of diabetes-exacerbated atherosclerosis and the complications. In this study we investigated the therapeutic effects of fisetin, a natural flavonoid from fruits and vegetables, on kidney injury caused by streptozotocin (STZ)-induced diabetic atherosclerosis in low density lipoprotein receptor deficient (LDLR-/-) mice. Diabetes was induced in LDLR-/- mice by injecting STZ, and the mice were fed high-fat diet (HFD) containing fisetin for 12 weeks. We found that fisetin treatment effectively attenuated diabetes-exacerbated atherosclerosis. Furthermore, we showed that fisetin treatment significantly ameliorated atherosclerosis-enhanced diabetic kidney injury, evidenced by regulating uric acid, urea and creatinine levels in urine and serum, and ameliorating morphological damages and fibrosis in the kidney. In addition, we found that the improvement of glomerular function by fisetin was mediated by reducing the production of reactive oxygen species (ROS), advanced glycosylation end products (AGEs) and inflammatory cytokines. Furthermore, fisetin treatment reduced accumulation of extracellular matrix (ECM) in the kidney by inhibiting the expression of vascular endothelial growth factor A (VEGFA), fibronectin and collagens, while enhancing matrix metalloproteinases 2 (MMP2) and MMP9, which was mainly mediated by inactivating transforming growth factor ß (TGFß)/SMAD family member 2/3 (Smad2/3) pathways. In both in vivo and in vitro experiments, we demonstrated that the therapeutic effects of fisetin on kidney fibrosis resulted from inhibiting CD36 expression. In conclusion, our results suggest that fisetin is a promising natural agent for the treatment of renal injury caused by diabetes and atherosclerosis. We reveal that fisetin is an inhibitor of CD36 for reducing the progression of kidney fibrosis, and fisetin-regulated CD36 may be a therapeutic target for the treatment of renal fibrosis.
Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Animais , Camundongos , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Fibrose/tratamento farmacológico , Rim/patologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Antígenos CD36/efeitos dos fármacosRESUMO
Factor XIa (FXIa) in the intrinsic pathway of the coagulation process has been proven to be an effective and safe target for anticoagulant discovery with limited or no bleeding. Numerous small-molecule FXIa inhibitors (SMFIs) with various scaffolds have been identified in the early stages of drug discovery. They have served as the foundation for the recent discovery of additional promising SMFIs with improved potency, selectivity, and pharmacokinetic profiles, some of which have entered clinical trials for the treatment of thrombosis. After reviewing the coagulation process and structure of FXIa, this perspective discusses the rational or structure-based design, discovery, structure-activity relationships, and development of SMFIs disclosed in recent years. Strategies for identifying more selective and druggable SMFIs are provided, paving the way for the design and discovery of more useful SMFIs for anticoagulation therapy.
Assuntos
Fator XIa , Trombose , Humanos , Coagulação Sanguínea , Anticoagulantes/farmacologia , Trombose/tratamento farmacológico , Descoberta de DrogasRESUMO
BACKGROUND: Hyperlipidemia (hypercholesterolemia and/or hypertriglyceridemia) is a risk factor for atherosclerosis. Nogo-B receptor (NgBR) plays important roles in hepatic steatosis and cholesterol transport. However, the effect of NgBR overexpression on atherosclerosis remains unknown. MATERIALS AND METHODS: Apolipoprotein E deficient (ApoE-/-) mice infected with adeno-associated virus (AAV)-NgBR expression vector were fed a high-fat diet for 12 weeks, followed by determination of atherosclerosis and the involved mechanisms. RESULTS: We determined that high expression of NgBR by AAV injection mainly occurs in the liver and it can substantially inhibit en face and aortic root sinus lesions. NgBR overexpression also reduced levels of inflammatory factors in the aortic root and serum, and levels of cholesterol, triglyceride, and free fatty acids in the liver and serum. Mechanistically, NgBR overexpression increased the expression of scavenger receptor type BI and the genes for bile acid synthesis, and decreased the expression of cholesterol synthesis genes by reducing sterol regulatory element-binding protein 2 maturation in the liver, thereby reducing hypercholesterolemia. In addition, NgBR overexpression activated AMP-activated protein kinase α via the Ca2+ signaling pathway, which inhibited fat synthesis and improved hypertriglyceridemia. CONCLUSIONS: Taken together, our study demonstrates that overexpression of NgBR enhanced cholesterol metabolism and inhibited cholesterol/fatty acid synthesis to reduce hyperlipidemia, and reduced vascular inflammation, thereby inhibiting atherosclerosis in ApoE-/- mice. Our study indicates that NgBR might be a potential target for atherosclerosis treatment.
Assuntos
Aterosclerose , Hipercolesterolemia , Hiperlipidemias , Hipertrigliceridemia , Animais , Camundongos , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Colesterol , Dieta Hiperlipídica/efeitos adversos , Hipercolesterolemia/complicações , Hipercolesterolemia/genética , Hiperlipidemias/complicações , Hipertrigliceridemia/complicações , Camundongos Knockout para ApoERESUMO
Sensitization of central pain and inflammatory pathways play essential roles in migraine, a primary neurobiological headache disorder. Since hypoxia-inducible factor-1α (HIF-1α) is implicated in neuroprotection and inflammation inhibition, herein we investigated the role of HIF-1α in migraine. A chronic migraine model was established in mice by repeated injection of nitroglycerin (10 mg/kg, i.p.) every other day for 5 total injections. In the prevention and acute experiments, roxadustat, a HIF-1α stabilizer, was orally administered starting before or after nitroglycerin injection, respectively. Pressure application measurement, and tail flick and light-aversive behaviour tests were performed to determine the pressure pain threshold, thermal nociceptive sensitivity and migraine-related light sensitivity. At the end of experiments, mouse serum samples and brain tissues were collected for analyses. We showed that roxadustat administration significantly attenuated nitroglycerin-induced basal hypersensitivity and acute hyperalgesia by improving central sensitization. Roxadustat administration also decreased inflammatory cytokine levels in serum and trigeminal nucleus caudalis (TNC) through NF-κB pathway. Consistent with the in vivo results showing that roxadustat inhibited microglia activation, roxadustat (2, 10, and 20 µM) dose-dependently reduced ROS generation and inflammation in LPS-stimulated BV-2 cells, a mouse microglia cell line, by inhibiting HIF-1α/NF-κB pathway. Taken together, this study demonstrates that roxadustat administration ameliorates migraine-like behaviours and inhibits central pain sensitization in nitroglycerin-injected mice, which is mainly mediated by HIF-1α/NF-κB/inflammation pathway, suggesting the potential of HIF-1α activators as therapeutics for migraine.
Assuntos
Transtornos de Enxaqueca , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Nitroglicerina/efeitos adversos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Limiar da Dor , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológicoRESUMO
Polo-like kinase 4 (PLK4), a serine/threonine kinase, is a member of the PLK family. As a key regulator of the cell cycle, PLK4 controls centrosome duplication and mitosis. Abnormal PLK4's function can induce centrosome amplification, leading to tumorigenesis, therefore, PLK4 has been regarded as a promising target for cancer therapy, and PLK4 inhibitors have potentials to treat multiple cancers and other PLK4-associated human disorders, such as myelodysplastic syndrome. In addition, PLK4 may function as a DNA-damage sensitizer, therefore improving the efficacy of chemotherapy. To date, some small-molecule inhibitors with different chemical scaffolds targeting PLK4 have been reported, among which, CFI-400945 has entered clinical trials for the treatment of various solid tumors, myeloid leukemia, and myelodysplastic syndrome. In this review, the structure and biological functions of PLK4 with other homologous PLKs are compared; the roles of PLK4 in different cancers are reviewed; and PLK4 inhibitors disclosed in patent or literature are summarized. Used alone or in combination with other anticancer drugs in preclinical and clinical studies, PLK4 inhibitors have shown significant efficacy in the treatment of different cancers, demonstrating that PLK4 could be a critical target for cancer diagnosis and therapy. However, our understanding of PLK4 is still limited, and novel mechanisms of PLK4 should be identified in future studies.
Assuntos
Antineoplásicos , Síndromes Mielodisplásicas , Neoplasias , Humanos , Proteínas Serina-Treonina Quinases/química , Neoplasias/patologia , Centrossomo/metabolismo , Centrossomo/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/metabolismo , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/metabolismoRESUMO
Epidemiological evidence emphasizes that ariboflavinosis can lead to oxidative stress, which in turn may mediate the initiation and progression of liver injury and intestinal inflammation. Although vitamin B2 has gained worldwide attention for its antioxidant defense, the relationship between B2 status, oxidative stress, inflammatory response, and intestinal homeostasis remains indistinct. Herein, we developed a B2 depletion-repletion BALB/c mice model to investigate the ameliorative effects of B2 bioenriched fermented soymilk (B2FS) on ariboflavinosis, accompanied by oxidative stress, inflammation, and gut microbiota modulation in response to B2 deficiency. In vivo results revealed that the phenotypic ariboflavinosis symptoms, growth rate, EGRAC status, and hepatic function reverted to normal after B2FS supplementation. B2FS significantly elevated CAT, SOD, T-AOC, and compromised MDA levels in the serum, simultaneously up-regulated Nrf2, CAT, and SOD2, and down-regulated Keap1 gene in the colon. The histopathological characteristics revealed significant alleviation in the liver and intestinal inflammation, confirmed by the downregulation of inflammatory (IL-1ß and IL-6) and nuclear transcription (NF-κB) factors after B2FS supplementation. B2FS also increased the abundance and diversity of gut microbiota, increased the relative abundance of Prevotella and Absiella, as well as decreased Proteobacteria, Fusobacteria, Synergistetes, and Cyanobacteria in strong conjunction with antioxidant, anti-inflammatory properties, and gut homeostasis along with the remarkable increase in cecal SCFAs content. We hereby reveal that B2FS can effectively alleviate deleterious ariboflavinosis associated with oxidative stress mediated liver injury, chronic intestinal inflammation, and gut dysbiosis in the B2 depletion-repletion mice model via activation of the Nrf2 signaling pathway.
Assuntos
Microbioma Gastrointestinal , Animais , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fígado/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Riboflavina/metabolismoRESUMO
Inhibition of cyclin-dependent kinases (CDKs) has become an effective therapeutic strategy for treating various diseases, especially cancer. Over almost three decades, although great efforts have been made to discover CDK inhibitors, many of which have entered clinical trials, only four CDK inhibitors have been approved. In the process of CDK inhibitor development, many difficulties and misunderstandings have hampered their discovery and clinical applications, which mainly include inadequate understanding of the biological functions of CDKs, less attention paid to pan- and multi-CDK inhibitors, nonideal isoform selectivity of developed selective CDK inhibitors, overlooking the metabolic stability of early discovered CDK inhibitors, no effective resistance solutions, and a lack of available combination therapy and effective biomarkers for CDK therapies. After reviewing the mechanisms of CDKs and the research progress of CDK inhibitors, this perspective summarizes and discusses these difficulties or lessons, hoping to facilitate the successful discovery of more useful CDK inhibitors.
Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Ciclo Celular , Quinase 4 Dependente de Ciclina , Quinases Ciclina-Dependentes , Descoberta de Drogas , Humanos , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
FXIa inhibition has been a promising strategy for treating thrombotic diseases. Up to date, many small-molecule FXIa inhibitors have been identified; however, most of them exhibit undesirable selectivity over the homologous plasma kallikrein (PKal). By employing structure-based drug design strategies, we identified many novel selective FXIa inhibitors that have extra interactions with the S2 subsite of FXIa. Among them, compound 35 displayed good inhibitory activity against FXIa and high selectivity over PKal and even several other serine proteases. Additionally, 35 showed significant anticoagulant activity toward the intrinsic pathway without affecting the extrinsic pathway. In vivo, 35 exhibited significant antithrombotic activity without increasing the bleeding risk and obvious toxicity in mice, demonstrating that it could be a promising candidate for further research. This study first demonstrates the importance of the S2 subsite of FXIa, paving the way to design highly selective FXIa inhibitors for clinical uses.
Assuntos
Fator XIa , Trombose , Animais , Anticoagulantes/farmacologia , Desenho de Fármacos , Camundongos , Trombose/tratamento farmacológicoRESUMO
In humans, more than three hundred diverse enzymes that require zinc as an essential cofactor have been identified. These zinc enzymes have demonstrated different and important physiological functions and some of them have been considered as valuable therapeutic targets for drug discovery. Indeed, many drugs targeting a few zinc enzymes have been marketed to treat a variety of diseases. This review discusses drug discovery and drug development based on a dozen of zinc enzymes, including their biological functions and pathogenic roles, their best in class inhibitors (and clinical trial data when available), coordination and binding modes of representative inhibitors, and their implications for further drug design. The opportunities and challenges in developing zinc enzyme inhibitors for the treatment of human disorders are highlighted, too.
Assuntos
Inibidores Enzimáticos/farmacologia , Enzimas/metabolismo , Zinco/metabolismo , Química Farmacêutica , Inibidores Enzimáticos/química , Humanos , Modelos MolecularesRESUMO
The reduction of insulin resistance or improvement of insulin sensitivity is the most effective treatment for type 2 diabetes (T2D). We previously reported that Nogo-B receptor (NGBR), encoded by the NUS1 gene, is required for attenuating hepatic lipogenesis by blocking nuclear translocation of liver X receptor alpha, suggesting its important role in regulating hepatic lipid metabolism. Herein, we demonstrate that NGBR expression was decreased in the liver of obesity-associated T2D patients and db/db mice. NGBR knockout in mouse hepatocytes resulted in increased blood glucose, insulin resistance, and beta-cell loss. High-fat diet (HFD)/streptozotocin (STZ)-treated mice presented the T2D phenotype by showing increased nonesterified fatty acid (NEFA) and triglyceride (TG) in the liver and plasma and increased insulin resistance and beta-cell loss. AAV-mediated NGBR overexpression in the liver reduced NEFA and TG in the liver and circulation and improved liver functions. Consequently, HFD/STZ-treated mice with hepatic NGBR overexpression had increased insulin sensitivity and reduced beta-cell loss. Mechanistically, NGBR overexpression restored insulin signaling of AMPKα1-dependent phosphorylation of AKT and GSK3ß. NGBR overexpression also reduced expression of endoplasmic reticulum stress-associated genes in the liver and skeletal muscle to improve insulin sensitivity. Together, our results reveal that NGBR is required to ameliorate T2D in mice, providing new insight into the role of hepatic NGBR in insulin sensitivity and T2D treatment.
Assuntos
Diabetes Mellitus Experimental/prevenção & controle , Diabetes Mellitus Tipo 2/prevenção & controle , Resistência à Insulina , Secreção de Insulina , Metabolismo dos Lipídeos , Receptores de Superfície Celular/metabolismo , Animais , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Receptores de Superfície Celular/genética , Transdução de SinaisRESUMO
Successes have been achieved in developing human monoamine oxidase B (hMAO-B) inhibitors as anti-Parkinson's disease (PD) drugs. However, low efficiency and unwanted side effects of the marketed hMAO-B inhibitors hamper their medical applications, therefore, novel potent selective hMAO-B inhibitors are still of great interest. Herein we report 1-(prop-2-yn-1-ylamino)-2,3-dihydro-1H-indene-4-thiol derivatives as hMAO-B inhibitors, which were designed by employing a fragment-based drug design strategy to link rasagiline to hydrophobic fragments. Among the synthesized 31 compounds, K8 and K24 demonstrated very encouraging hMAO-B inhibitory activities and selectivity over hMAO-A, better than rasagiline and safinamide. In vitro studies indicated that K8 and K24 are nontoxic to nervous tissue cells and they have considerable effects against ROS formation and potential neuroprotective activity. Further mice behavioral tests demonstrated these two compounds have good therapeutic effects on MPTP-induced PD model mice. All these experiment results suggest that compounds K8 and K24 can be promising candidates for further research for treatment of PD.