Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Immunol Lett ; 268: 106869, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38788802

RESUMO

Inflammatory bowel disease (IBD) is a chronic and progressive inflammatory intestinal disease that affects people around the world. The primary cause of IBD is an imbalance in the host immune response to intestinal flora. Several human genes, including IL10, STAT3, IRGM, ATG16L1, NOD2 and RUNX3, are associated with inappropriate immune responses in IBD. It has been reported that homozygous Runx3-knockout (ko) mice spontaneously develop colitis. However, the high mortality rate in these mice within the first two weeks makes it challenging to study the role of Runx3 in colitis. To address this issue, a spontaneous colitis (SC) mouse model carrying a C-terminal truncated form of Runx3 with Tyr319stop point mutation has been generated. After weaning, SC mice developed spontaneous diarrhea and exhibited prominent enlargement of the colon, accompanied by severe inflammatory cell infiltration. Results of immunofluorescence staining showed massive CD4+ T cell infiltration in the inflammatory colon of SC mice. Colonic IL-17A mRNA expression and serum IL-17A level were increased in SC mice. CD4+ T cells from SC mice produced stronger IL-17A than those from wildtype mice in Th17-skewing conditions in vitro. In addition, the percentages of Foxp3+ Treg cells as well as the RORγt+Foxp3+ Treg subset, known for its role in suppressing Th17 response in the gut, were notably lower in colon lamina propria of SC mice than those in WT mice. Furthermore, transfer of total CD4+ T cells from SC mice, but not from wildtype mice, into Rag1-ko host mice resulted in severe autoimmune colitis. In conclusion, the C-terminal truncated Runx3 caused autoimmune colitis associated with Th17/Treg imbalance. The SC mouse model is a feasible approach to investigate the effect of immune response on spontaneous colitis.

2.
Lab Anim Res ; 40(1): 16, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649958

RESUMO

BACKGROUND: Therapeutic interventions for diabetes are most effective when administered in the newly onset phase, yet determining the exact onset moment can be elusive in practice. Spontaneous autoimmune diabetes among NOD mice appears randomly between 12 and 32 weeks of age with an incidence range from 60 to 90%. Furthermore, the disease often progresses rapidly to severe diabetes within days, resulting in a very short window of newly onset phase, that poses significant challenge in early diagnosis. Conventionally, extensive blood glucose (BG) testing is typically required on large cohorts throughout several months to conduct prospective survey. We incorporated ultrasensitive urine glucose (UG) testing into an ordinary BG survey process, initially aiming to elucidate the lag period required for excessive glucose leaking from blood to urine during diabetes progression in the mouse model. RESULTS: The observations unexpectedly revealed that small amounts of glucose detected in the urine often coincide with, sometimes even a couple days prior than elevated BG is diagnosed. Accordingly, we conducted the UG-based survey protocol in another cohort that was validated to accurately identified every individual near onset, who could then be confirmed by following few BG tests to fulfill the consecutive BG + criteria. This approach required fewer than 95 BG tests, compared to over 700 tests with traditional BG survey, to diagnose all the 37-38 diabetic mice out of total 60. The average BG level at diagnosis was slightly below 350 mg/dl, lower than the approximately 400 mg/dl observed with conventional BG monitoring. CONCLUSIONS: We demonstrated a near perfect correlation between BG + and ultrasensitive UG + results in prospective survey with no lag period detected under twice weekly of testing frequency. This led to the refined protocol based on surveying with noninvasive UG testing, allowing for the early identification of newly onset diabetic mice with only a few BG tests required per mouse. This protocol significantly reduces the need for extensive blood sampling, lancet usage, labor, and animal distress, aligning with the 3Rs principle. It presents a convenient, accurate, and animal-friendly alternative for early diabetes diagnosis, facilitating research on diagnosis, pathogenesis, prevention, and treatment.

3.
J Comp Neurol ; 532(2): e25565, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38047381

RESUMO

Here, we describe the postnatal development of retinal projections in galagos. Galagos are of special interest as they represent the understudied strepsirrhine branch (galagos, pottos, lorises, and lemurs) of the primate radiations. The projections of both eyes were revealed in each galago by injecting red or green cholera toxin subunit B (CTB) tracers into different eyes of galagos ranging from postnatal day 5 to adult. In the dorsal lateral geniculate nucleus, the magnocellular, parvocellular, and koniocellular layers were clearly labeled and identified by having inputs from the ipsilateral or contralateral eye at all ages. In the superficial layers of the superior colliculus, the terminations from the ipsilateral eye were just ventral to those from the contralateral eye at all ages. Other terminations at postnatal day 5 and later were in the pregeniculate nucleus, the accessory optic system, and the pretectum. As in other primates, a small retinal projection terminated in the posterior part of the pulvinar, which is known to project to the temporal visual cortex. This small projection from both eyes was most apparent on day 5 and absent in mature galagos. A similar reduction over postnatal maturation has been reported in marmosets, leading to the speculation that early retinal inputs to the pulvinar are responsible for the activation and early maturation of the middle temporal visual area, MT.


Assuntos
Galago , Pulvinar , Animais , Vias Visuais/fisiologia , Colículos Superiores/fisiologia , Corpos Geniculados
4.
Proc Natl Acad Sci U S A ; 120(11): e2222076120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36877853

RESUMO

Neurons in the early stages of processing sensory information suffer transneuronal atrophy when deprived of their activating inputs. For over 40 y, members of our laboratory have studied the reorganization of the somatosensory cortex during and after recovering from different types of sensory loss. Here, we took advantage of the preserved histological material from these studies of the cortical effects of sensory loss to evaluate the histological consequences in the cuneate nucleus of the lower brainstem and the adjoining spinal cord. The neurons in the cuneate nucleus are activated by touch on the hand and arm, and relay this activation to the contralateral thalamus, and from the thalamus to the primary somatosensory cortex. Neurons deprived of activating inputs tend to shrink and sometimes die. We considered the effects of differences in species, type and extent of sensory loss, recovery time after injury, and age at the time of injury on the histology of the cuneate nucleus. The results indicate that all injuries that deprived part or all of the cuneate nucleus of sensory activation result in some atrophy of neurons as reflected by a decrease in nucleus size. The extent of the atrophy is greater with greater sensory loss and with longer recovery times. Based on supporting research, atrophy appears to involve a reduction in neuron size and neuropil, with little or no neuron loss. Thus, the potential exists for restoring the hand to cortex pathway with brain-machine interfaces, for bionic prosthetics, or biologically with hand replacement surgery.


Assuntos
Tronco Encefálico , Primatas , Animais , Mãos , Extremidade Superior , Atrofia
5.
J Comp Neurol ; 531(1): 25-47, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36117273

RESUMO

In prosimian galagos, the posterior parietal cortex (PPC) is subdivided into a number of functional domains where long-train intracortical microstimulation evoked different types of complex movements. Here, we placed anatomical tracers in multiple locations of PPC to reveal the origins and targets of thalamic connections of four PPC domains for different types of hindlimb, forelimb, or face movements. Thalamic connections of all four domains included nuclei of the motor thalamus, ventral anterior and ventral lateral nuclei, as well as parts of the sensory thalamus, the anterior pulvinar, posterior and ventral posterior superior nuclei, consistent with the sensorimotor functions of PPC domains. PPC domains also projected to the thalamic reticular nucleus in a somatotopic pattern. Quantitative differences in the distributions of labeled neurons in thalamic nuclei suggested that connectional patterns of these domains differed from each other.


Assuntos
Galago , Lobo Parietal , Animais , Galago/fisiologia , Vias Neurais/fisiologia , Lobo Parietal/fisiologia , Tálamo/fisiologia , Núcleos Talâmicos
6.
J Comp Neurol ; 529(10): 2789-2812, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33550608

RESUMO

Previous studies in prosimian galagos (Otolemur garnetti) have demonstrated that posterior parietal cortex (PPC) is subdivided into several functionally distinct domains, each of which mediates a specific type of complex movements (e.g., reaching, grasping, hand-to-mouth) and has a different pattern of cortical connections. Here we identified a medially located domain in PPC where combined forelimb and hindlimb movements, as if climbing or running, were evoked by long-train intracortical microstimulation. We injected anatomical tracers in this climbing/running domain of PPC to reveal its cortical connections. Our results showed the PPC climbing domain had dense intrinsic connections within rostral PPC and reciprocal connections with forelimb and hindlimb region in primary motor cortex (M1) of the ipsilateral hemisphere. Fewer connections were with dorsal premotor cortex (PMd), supplementary motor (SMA), and cingulate motor (CMA) areas, as well as somatosensory cortex including areas 3a, 3b, and 1-2, secondary somatosensory (S2), parietal ventral (PV), and retroinsular (Ri) areas. The rostral portion of the climbing domain had more connections with primary somatosensory cortex than the caudal portion. Cortical projections were found in functionally matched domains in M1 and premotor cortex (PMC). Similar patterns of connections with fewer labeled neurons and terminals were seen in the contralateral hemisphere. These connection patterns are consistent with the proposed role of the climbing/running domain as part of a parietal-frontal network for combined use of the limbs in locomotion as in climbing and running. The cortical connections identify this action-specific domain in PPC as a more somatosensory driven domain.


Assuntos
Galago/anatomia & histologia , Galago/fisiologia , Atividade Motora/fisiologia , Lobo Parietal/citologia , Lobo Parietal/fisiologia , Animais , Vias Neurais/citologia , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico , Neurônios/citologia , Neurônios/fisiologia
7.
J Comp Neurol ; 529(7): 1669-1702, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33029803

RESUMO

Recovery of responses to cutaneous stimuli in the area 3b hand cortex of monkeys after dorsal column lesions (DCLs) in the cervical spinal cord relies on neural rewiring in the cuneate nucleus (Cu) over time. To examine whether the corticocuneate projections are modified during recoveries after the DCL, we injected cholera toxin subunit B into the hand representation in Cu to label the cortical neurons after various recovery times, and related results to the recovery of neural responses in the affected area 3b hand cortex. In normal New World monkeys, labeled neurons were predominately distributed in the hand regions of contralateral areas 3b, 3a, 1 and 2, parietal ventral (PV), secondary somatosensory cortex (S2), and primary motor cortex (M1), with similar distributions in the ipsilateral cortex in significantly smaller numbers. In monkeys with short-term recoveries, the area 3b hand neurons were unresponsive or responded weakly to touch on the hand, while the cortical labeling pattern was largely unchanged. After longer recoveries, the area 3b hand neurons remained unresponsive, or responded to touch on the hand or somatotopically abnormal parts, depending on the lesion extent. The distributions of cortical labeled neurons were much more widespread than the normal pattern in both hemispheres, especially when lesions were incomplete. The proportion of labeled neurons in the contralateral area 3b hand cortex was not correlated with the functional reactivation in the area 3b hand cortex. Overall, our findings indicated that corticocuneate inputs increase during the functional recovery, but their functional role is uncertain.


Assuntos
Vias Aferentes/fisiopatologia , Bulbo/fisiopatologia , Plasticidade Neuronal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Platirrinos
8.
J Comp Neurol ; 528(17): 3075-3094, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32067231

RESUMO

Considerable evidence supports the premise that the visual system of primates develops hierarchically, with primary visual cortex developing structurally and functionally first, thereby influencing the subsequent development of higher cortical areas. An apparent exception is the higher order middle temporal visual area (MT), which appears to be histologically distinct near the time of birth in marmosets. Here we used a number of histological and immunohistological markers to evaluate the maturation of cortical and subcortical components of the visual system in galagos ranging from newborns to adults. Galagos are representative of the large strepsirrhine branch of primate evolution, and studies of these primates help identify brain features that are broadly similar across primate taxa. The histological results support the view that MT is functional at or near the time of birth, as is primary visual cortex. Likewise, the superior colliculus, dorsal lateral geniculate nucleus, and the posterior nucleus of the pulvinar are well-developed by birth. Thus, these subcortical structures likely provide visual information directly or indirectly to cortex in newborn galagos. We conclude that MT resembles a primary sensory area by developing early, and that the early development of MT may influence the subsequent development of dorsal stream visual areas.


Assuntos
Galagidae/crescimento & desenvolvimento , Pulvinar/crescimento & desenvolvimento , Colículos Superiores/crescimento & desenvolvimento , Córtex Visual/crescimento & desenvolvimento , Fatores Etários , Animais , Corpos Geniculados/citologia , Corpos Geniculados/crescimento & desenvolvimento , Pulvinar/citologia , Colículos Superiores/citologia , Córtex Visual/citologia , Vias Visuais/citologia , Vias Visuais/crescimento & desenvolvimento
9.
Sci Rep ; 9(1): 19065, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836734

RESUMO

The acute phase response (APR) is a systemic first-line defense against challenges including infection, trauma, stress, and neoplasia. Alteration of acute phase protein (APP) levels in plasma is the most important change during acute phase response. C-reactive protein (CRP), which increases dramatically during inflammation onset, is an indicator of inflammation. To monitor the process of APR, we generated human CRP promoter-driven luciferase transgenic (hCRP-Luc) mice to quantify the hCRP promoter activation in vivo. The naïve female hCRP-Luc mice express low basal levels of liver bioluminescence, but the naïve male hCRP-Luc mice do not. Thus, female hCRP-Luc mice are suitable for monitoring the process of APR. The liver bioluminescence of female hCRP-Luc mice can be induced by several toll-like receptor (TLR) ligands. The expression of liver bioluminescence was highly sensitive to endotoxin stimulation in a dose-dependent manner. On-off-on bioluminescence response was noted in female hCRP-Luc mice upon two endotoxin stimulations one month apart. The LPS-induced bioluminescence of the female hCRP-Luc mice was IL-6-mediated and associated with APP alpha-1-acid glycoprotein expression. In conclusion, the female hCRP-Luc mouse is a non-invasive, sensitive and reusable reporter tool for APR.


Assuntos
Reação de Fase Aguda/metabolismo , Genes Reporter , Receptores Toll-Like/metabolismo , Proteínas de Fase Aguda/metabolismo , Animais , Sequência de Bases , Proteína C-Reativa/metabolismo , Feminino , Hormônios Esteroides Gonadais/farmacologia , Humanos , Interleucina-6/metabolismo , Ligantes , Lipopolissacarídeos/farmacologia , Luciferases/metabolismo , Luminescência , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
10.
J Comp Neurol ; 527(3): 577-588, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30078198

RESUMO

Comprised of at least five distinct nuclei, the pulvinar complex of primates includes two large visually driven nuclei; one in the dorsal (lateral) pulvinar and one in the ventral (inferior) pulvinar, that contain similar retinotopic representations of the contralateral visual hemifield. Both nuclei also appear to have similar connections with areas of visual cortex. Here we determined the cortical connections of these two nuclei in galagos, members of the stepsirrhine primate radiation, to see if the nuclei differed in ways that could support differences in function. Injections of different retrograde tracers in each nucleus produced similar patterns of labeled neurons, predominately in layer 6 of V1, V2, V3, MT, regions of temporal cortex, and other visual areas. More complete labeling of neurons with a modified rabies virus identified these neurons as pyramidal cells with apical dendrites extending into superficial cortical layers. Importantly, the distributions of cortical neurons projecting to each of the two nuclei were highly overlapping, but formed separate populations. Sparse populations of double-labeled neurons were found in both V1 and V2 but were very low in number (<0.1%). Finally, the labeled cortical neurons were predominately in layer 6, and layer 5 neurons were labeled only in extrastriate areas. Terminations of pulvinar projections to area 17 was largely in superficial cortical layers, especially layer 1.


Assuntos
Mapeamento Encefálico/métodos , Pulvinar/citologia , Retina , Córtex Visual/citologia , Vias Visuais/citologia , Animais , Galagidae , Pulvinar/fisiologia , Retina/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia
11.
Cereb Cortex ; 29(10): 4347-4365, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30590401

RESUMO

Unilateral dorsal column lesions (DCL) at the cervical spinal cord deprive the hand regions of somatosensory cortex of tactile activation. However, considerable cortical reactivation occurs over weeks to months of recovery. While most studies focused on the reactivation of primary somatosensory area 3b, here, for the first time, we address how the higher-order somatosensory cortex reactivates in the same monkeys after DCL that vary across cases in completeness, post-lesion recovery times, and types of treatments. We recorded neural responses to tactile stimulation in areas 3a, 3b, 1, secondary somatosensory cortex (S2), parietal ventral (PV), and occasionally areas 2/5. Our analysis emphasized comparisons of the responsiveness, somatotopy, and receptive field size between areas 3b, 1, and S2/PV across DCL conditions and recovery times. The results indicate that the extents of the reactivation in higher-order somatosensory areas 1 and S2/PV closely reflect the reactivation in primary somatosensory cortex. Responses in higher-order areas S2 and PV can be stronger than those in area 3b, thus suggesting converging or alternative sources of inputs. The results also provide evidence that both primary and higher-order fields are effectively activated after long recovery times as well as after behavioral and electrocutaneous stimulation interventions.


Assuntos
Plasticidade Neuronal , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Percepção do Tato/fisiologia , Vias Aferentes/fisiopatologia , Animais , Mãos , Masculino , Estimulação Física , Recuperação de Função Fisiológica , Saimiri , Privação Sensorial/fisiologia
12.
Proc Natl Acad Sci U S A ; 115(16): 4258-4263, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610299

RESUMO

Months after the occurrence of spinal cord dorsal column lesions (DCLs) at the cervical level, neural responses in the hand representation of somatosensory area 3b hand cortex recover, along with hand use. To examine whether the second-order spinal cord pathway contributes to this functional recovery, we injected cholera toxin subunit B (CTB) into the hand representation in the cuneate nucleus (Cu) to label the spinal cord neurons, and related results to cortical reactivation in four squirrel monkeys (Saimiri boliviensis) at least 7 months after DCL. In two monkeys with complete DCLs, few CTB-labeled neurons were present below the lesion, and few neurons in the affected hand region in area 3b responded to touch on the hand. In two other cases with large but incomplete DCLs, CTB-labeled neurons were abundant below the lesion, and the area 3b hand cortex responded well to tactile stimulation in a roughly somatotopic organization. The proportions of labeled neurons in the spinal cord hand region reflected the extent of cortical reactivation to the hand. Comparing monkeys with short and long recovery times suggests that the numbers of labeled neurons below the lesion increase with time following incomplete DCLs (<95%) but decrease with time after nearly complete DCLs (≥95%). Taken together, these results suggest that the second-order spinal cord pathway facilitates cortical reactivation, likely through the potentiation of persisting tactile inputs from the hand to the Cu over months of postlesion recovery.


Assuntos
Mãos/fisiopatologia , Células do Corno Posterior/fisiologia , Córtex Somatossensorial/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Percepção do Tato/fisiologia , Vias Aferentes/fisiopatologia , Animais , Transporte Axonal , Axônios/fisiologia , Toxina da Cólera/farmacocinética , Convalescença , Mãos/inervação , Hipestesia/fisiopatologia , Bulbo/fisiopatologia , Plasticidade Neuronal/fisiologia , Recuperação de Função Fisiológica/fisiologia , Saimiri , Tálamo/fisiopatologia
13.
J Biomed Opt ; 23(4): 1-9, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29637760

RESUMO

A method is proposed for determining the glucose concentration on the human fingertip by extracting two optical parameters, namely the optical rotation angle and the depolarization index, using a Mueller optical coherence tomography technique and a genetic algorithm. The feasibility of the proposed method is demonstrated by measuring the optical rotation angle and depolarization index of aqueous glucose solutions with low and high scattering, respectively. It is shown that for both solutions, the optical rotation angle and depolarization index vary approximately linearly with the glucose concentration. As a result, the ability of the proposed method to obtain the glucose concentration by means of just two optical parameters is confirmed. The practical applicability of the proposed technique is demonstrated by measuring the optical rotation angle and depolarization index on the human fingertip of healthy volunteers under various glucose conditions.


Assuntos
Glicemia/análise , Dedos/diagnóstico por imagem , Processamento de Sinais Assistido por Computador , Tomografia de Coerência Óptica/métodos , Algoritmos , Desenho de Equipamento , Estudos de Viabilidade , Humanos , Imagens de Fantasmas , Tomografia de Coerência Óptica/instrumentação
14.
Pain Physician ; 20(2): E269-E283, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28158164

RESUMO

BACKGROUND: Pulsed radiofrequency (PRF) has been widely employed for ameliorating clinical neuropathic pain. How PRF alters electrophysiological transmission and modulates biomolecular functions in neural tissues has yet to be clarified. We previously demonstrated that an early application of low-voltage bipolar PRF adjacent to the dorsal root ganglion (DRG) reduced acute neuropathic pain in animals. By contrast, the present study investigated how PRF alters postsynaptic sensitization to produce early and delayed effects on neuropathic pain. OBJECTIVES: Our objective was to test the hypothesis that a 5-minute session of PRF could rapidly produce selective long-term depression (LTD) on C-fiber-mediated spinal sensitization and sustain the effect through the long-lasting inhibition of injury-induced ERK-MAPK activation. This may explain the prolonged analgesic effect of PRF on chronic neuropathic pain. STUDY DESIGN: Experiments were conducted on both normal rats and neuropathic pain rats that received spinal nerve ligation (SNL) 8 days prior. SETTING: An animal laboratory in a medical center of a university in Taiwan. METHODS: We first compared changes in field potentials in the L5 superficial spinal dorsal horn (SDH) that were evoked by conditioning electrical stimuli in the sciatic nerve in male adult rats before (as the baseline) and after PRF stimulation for at least 2 hours. Bipolar PRF was applied adjacent to the L5 DRG at an intensity of 5 V for 5 minutes, whereas the control rats were treated with sham applications. The electrophysiological findings were tested for any correlation with induction of spinal phospho-ERK (p-ERK) in normal and neuropathic pain rats. We then investigated the delayed effect of PRF on SNL-maintained pain behaviors for 2 weeks as well as p-ERK in SDH among the control, SNL, and PRF groups. Finally, potential injury in the DRGs after PRF stimulation was evaluated through behavioral observations and ATF-3, a neuronal stress marker. RESULTS: In the evoked field-potential study, the recordings mediated through A- and C-afferent fibers were identified as A-component and C-component, respectively. PRF significantly reduced the C-components over 2 hours in both the normal and SNL rats, but it did not affect the A-components. In the SNL rats, the C-component was significantly depressed in the PRF group compared with the sham group. PRF also inhibited acute p-ERK induced by mechanical nociception in both the control and SNL rats. For a longer period, PRF ameliorated SNL-maintained mechanical allodynia for 10 days and thermal analgesia for 14 days, and it significantly reduced late ERK activation within spinal neurons and astrocytes 14 days afterward. Moreover, PRF in the normal rats did not alter basal withdrawal thresholds or increase the expression and distribution of ATF-3 in the DRGs. LIMITATIONS: Several issues should be considered before translating the animal results to clinical applications. CONCLUSIONS: Low-voltage bipolar PRF produces LTD through selective suppression on the C-component, but not on the A-component. It also inhibits ERK activation within neurons and astrocytes in SDHs. The findings suggest that PRF alleviates long-lasting neuropathic pain by selectively and persistently modulating C-fiber-mediated spinal nociceptive hypersensitivity.Key words: Pulsed radiofrequency (PRF), dorsal root ganglion (DRG), neuropathic pain, ERK activation, evoked field potential, ATF-3, long-term depression (LTD), spinal nerve ligation (SNL).


Assuntos
Depressão/fisiopatologia , Neuralgia/terapia , Animais , Modelos Animais de Doenças , Hiperalgesia , Masculino , Neuralgia/fisiopatologia , Manejo da Dor , Tratamento por Radiofrequência Pulsada , Ratos , Ratos Sprague-Dawley , Nervos Espinhais
15.
J Exp Neurosci ; 10(Suppl 1): 11-21, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27578996

RESUMO

Here, we review recent work on plasticity and recovery after dorsal column spinal cord injury in nonhuman primates. Plasticity in the adult central nervous system has been established and studied for the past several decades; however, capacities and limits of plasticity are still under investigation. Studies of plasticity include assessing multiple measures before and after injury in animal models. Such studies are particularly important for improving recovery after injury in patients. In summarizing work by our research team and others, we suggest how the findings from plasticity studies in nonhuman primate models may affect therapeutic interventions for conditions involving sensory loss due to spinal cord injury.

16.
Neuroimage ; 142: 431-453, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27523450

RESUMO

After lesions of the somatosensory dorsal column (DC) pathway, the cortical hand representation can become unresponsive to tactile stimuli, but considerable responsiveness returns over weeks of post-lesion recovery. The reactivation suggests that preserved subthreshold sensory inputs become potentiated and axon sprouting occurs over time to mediate recovery. Here, we studied the recovery process in 3 squirrel monkeys, using high-resolution cerebral blood volume-based functional magnetic resonance imaging (CBV-fMRI) mapping of contralateral somatosensory cortex responsiveness to stimulation of distal finger pads with low and high level electrocutaneous stimulation (ES) before and 2, 4, and 6weeks after a mid-cervical level contralateral DC lesion. Both low and high intensity ES of digits revealed the expected somatotopy of the area 3b hand representation in pre-lesion monkeys, while in areas 1 and 3a, high intensity stimulation was more effective in activating somatotopic patterns. Six weeks post-lesion, and irrespective of the severity of loss of direct DC inputs (98%, 79%, 40%), somatosensory cortical area 3b of all three animals showed near complete recovery in terms of somatotopy and responsiveness to low and high intensity ES. However there was significant variability in the patterns and amplitudes of reactivation of individual digit territories within and between animals, reflecting differences in the degree of permanent and/or transient silencing of primary DC and secondary inputs 2weeks post-lesion, and their spatio-temporal trajectories of recovery between 2 and 6weeks. Similar variations in the silencing and recovery of somatotopy and responsiveness to high intensity ES in areas 3a and 1 are consistent with individual differences in damage to and recovery of DC and spinocuneate pathways, and possibly the potentiation of spinothalamic pathways. Thus, cortical deactivation and subsequent reactivation depends not only on the degree of DC lesion, but also on the severity and duration of loss of secondary as well as primary inputs revealed by low and high intensity ES.


Assuntos
Dedos/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Vias Neurais/lesões , Recuperação de Função Fisiológica/fisiologia , Córtex Somatossensorial/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Estimulação Elétrica Nervosa Transcutânea/métodos , Animais , Circulação Cerebrovascular , Masculino , Saimiri , Tratos Espinotalâmicos/fisiopatologia
18.
J Comp Neurol ; 524(7): 1494-526, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26519356

RESUMO

A complete unilateral lesion of the dorsal column somatosensory pathway in the upper cervical spinal cord deactivates neurons in the hand region in contralateral somatosensory cortex (areas 3b and 1). Over weeks to months of recovery, parts of the hand region become reactivated by touch on the hand or face. To determine whether changes in cortical connections potentially contribute to this reactivation, we injected tracers into electrophysiologically identified locations in cortex of area 3b representing the reactivated hand and normally activated face in adult squirrel monkeys. Our results indicated that even when only partially reactivated, most of the expected connections of area 3b remained intact. These intact connections include the majority of intrinsic connections within area 3b; feedback connections from area 1, secondary somatosensory cortex (S2), parietal ventral area (PV), and other cortical areas; and thalamic inputs from the ventroposterior lateral nucleus (VPL). In addition, tracer injections in the reactivated hand region of area 3b labeled more neurons in the face and shoulder regions of area 3b than in normal monkeys, and injections in the face region of area 3b labeled more neurons in the hand region. Unexpectedly, the intrinsic connections within area 3b hand cortex were more widespread after incomplete dorsal column lesions (DCLs) than after a complete DCL. Although these additional connections were limited, these changes in connections may contribute to the reactivation process after injuries. J. Comp. Neurol. 524:1494-1526, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Lateralidade Funcional/fisiologia , Mãos/inervação , Vias Neurais/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Animais , Biotina/análogos & derivados , Biotina/metabolismo , Mapeamento Encefálico , Toxina da Cólera/metabolismo , Dextranos/metabolismo , Força da Mão/fisiologia , Amplitude de Movimento Articular/fisiologia , Saimiri , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Conjugado Aglutinina do Germe de Trigo-Peroxidase do Rábano Silvestre/metabolismo
19.
Brain Struct Funct ; 221(1): 383-406, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25326245

RESUMO

Limbs may fail to grow properly during fetal development, but the extent to which such growth alters the nervous system has not been extensively explored. Here we describe the organization of the somatosensory system in a 6-year-old monkey (Macaca radiata) born with a deformed left foot in comparison to the results from a normal monkey (Macaca fascicularis). Toes 1, 3, and 5 were missing, but the proximal parts of toes 2 and 4 were present. We used anatomical tracers to characterize the patterns of peripheral input to the spinal cord and brainstem, as well as between thalamus and cortex. We also determined the somatotopic organization of primary somatosensory area 3b of both hemispheres using multiunit electrophysiological recording. Tracers were subcutaneously injected into matching locations of each foot to reveal their representations within the lumbar spinal cord, and the gracile nucleus (GrN) of the brainstem. Tracers injected into the representations of the toes and plantar pads of cortical area 3b labeled neurons in the ventroposterior lateral nucleus (VPL) of the thalamus. Contrary to the orderly arrangement of the foot representation throughout the lemniscal pathway in the normal monkey, the plantar representation of the deformed foot was significantly expanded and intruded into the expected representations of toes in the spinal cord, GrN, VPL, and area 3b. We also observed abnormal representation of the intact foot in the ipsilateral spinal cord and contralateral area 3b. Thus, congenital malformation influences the somatotopic representation of the deformed as well as the intact foot.


Assuntos
Cérebro/fisiopatologia , Deformidades Congênitas do Pé/veterinária , Pé/inervação , Doenças dos Macacos/fisiopatologia , Plasticidade Neuronal , Córtex Somatossensorial/fisiopatologia , Potenciais de Ação , Animais , Mapeamento Encefálico/veterinária , Tronco Encefálico/fisiopatologia , Eletroencefalografia/veterinária , Deformidades Congênitas do Pé/fisiopatologia , Macaca fascicularis , Macaca radiata , Vias Neurais/fisiopatologia , Técnicas de Rastreamento Neuroanatômico/veterinária , Medula Espinal/fisiopatologia , Tálamo/fisiopatologia
20.
Proc Natl Acad Sci U S A ; 112(22): 7079-84, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26038561

RESUMO

Galagos are prosimian primates that resemble ancestral primates more than most other extant primates. As in many other mammals, the facial vibrissae of galagos are distributed across the upper and lower jaws and above the eye. In rats and mice, the mystacial macrovibrissae are represented throughout the ascending trigeminal pathways as arrays of cytoarchitecturally distinct modules, with each module having a nearly one-to-one relationship with a specific facial whisker. The macrovibrissal representations are termed barrelettes in the trigeminal somatosensory brainstem, barreloids in the ventroposterior medial subnucleus of the thalamus, and barrels in primary somatosensory cortex. Despite the presence of facial whiskers in all nonhuman primates, barrel-like structures have not been reported in primates. By staining for cytochrome oxidase, Nissl, and vesicular glutamate transporter proteins, we show a distinct array of barrelette-like and barreloid-like modules in the principal sensory nucleus, the spinal trigeminal nucleus, and the ventroposterior medial subnucleus of the galago, Otolemur garnetti. Labeled terminals of primary sensory neurons in the brainstem and cell bodies of thalamocortically projecting neurons demonstrate that barrelette-like and barreloid-like modules are located in areas of these somatosensory nuclei that are topographically consistent with their role in facial touch. Serendipitously, the plane of section that best displays the barreloid-like modules reveals a remarkably distinct homunculus-like patterning which, we believe, is one of the clearest somatotopic maps of an entire body surface yet found.


Assuntos
Vias Neurais/citologia , Vias Neurais/fisiologia , Strepsirhini/anatomia & histologia , Tálamo/anatomia & histologia , Vibrissas/fisiologia , Animais , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Corpos de Nissl/metabolismo , Células Receptoras Sensoriais/metabolismo , Strepsirhini/fisiologia , Tálamo/fisiologia , Núcleo Espinal do Trigêmeo/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA