Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
RSC Med Chem ; 14(12): 2473-2495, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38107167

RESUMO

Recently nanoparticle-based platforms have gained interest as drug delivery systems and diagnostic agents, especially in cancer therapy. With their ability to provide preferential accumulation at target sites, nanocarrier-constructed antitumor drugs can improve therapeutic efficiency and bioavailability. In contrast, metal-organic frameworks (MOFs) have received increasing academic interest as an outstanding class of coordination polymers that combine porous structures with high drug loading via temperature modulation and ligand interactions, overcoming the drawbacks of conventional drug carriers. FeIII-based MOFs are one of many with high biocompatibility and good drug loading capacity, as well as unique Fenton reactivity and superparamagnetism, making them highly promising in chemodynamic and photothermal therapy, and magnetic resonance imaging. Given this, this article summarizes the applications of FeIII-based MOFs in three significant fields: chemodynamic therapy, photothermal therapy and MRI, suggesting a logical route to new strategies. This article concludes by summarising the primary challenges and development prospects in these promising research areas.

2.
RSC Med Chem ; 14(10): 1914-1933, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37859709

RESUMO

This article mainly reviews the biomedicine applications of two metal-organic frameworks (MOFs), MIL-100(Fe) and MIL-101(Fe). These MOFs have advantages such as high specific surface area, adjustable pore size, and chemical stability, which make them widely used in drug delivery systems. The article first introduces the properties of these two materials and then discusses their applications in drug transport, antibacterial therapy, and cancer treatment. In cancer treatment, drug delivery systems based on MIL-100(Fe) and MIL-101(Fe) have made significant progress in chemotherapy (CT), chemodynamic therapy (CDT), photothermal therapy (PTT), photodynamic therapy (PDT), immunotherapy (IT), nano-enzyme therapy, and related combined therapy. Overall, these MIL-100(Fe) and MIL-101(Fe) materials have tremendous potential and diverse applications in the field of biomedicine.

3.
Colloids Surf B Biointerfaces ; 232: 113612, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37898043

RESUMO

Breast cancer, one of the three most life-threatening cancers in modern times, must be explored for treatments with low side effects and practical efficacy. Metal organic framework materials (MOFs) is made by metal ions as the center for point and organic ligands as a bridge connecting a new type of porous nano-materials, among them, the zinc base zeolite imidazole skeleton material series (ZIFs) because of its excellent biocompatibility and pH slow controlled release ability, is widely used in the tumor microenvironment in basic research and achieved remarkable curative effect. Inspired by this, in this review, we focus on the recent research progress on the application of ZIFs in the treatment of breast cancer, mainly studying the structure of ZIFs such as ZIF-8, ZIF-90 and ZIF-67 and their application in novel therapies for breast cancer treatment, such as targeted drug delivery, photothermal therapy, immunotherapy and gene therapy.We will more fully demonstrate the potential of zif in breast cancer treatment, hoping to provide an avenue for exploring breast cancer treatment.


Assuntos
Neoplasias da Mama , Estruturas Metalorgânicas , Humanos , Feminino , Neoplasias da Mama/terapia , Sistemas de Liberação de Medicamentos , Estruturas Metalorgânicas/química , Microambiente Tumoral
4.
Expert Opin Drug Deliv ; 20(9): 1209-1229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37776531

RESUMO

INTRODUCTION: Porous coordination networks (PCNs) have been widely used in large number of applications such as light harvesting, catalysis, and biomedical applications. Inserting porphyrins into PCNs scaffolds can alleviate the solubility and chemical stability problems associated with porphyrin ligands and add functionality to PCNs. The discovery that some PCNs materials have photosensitizer and acoustic sensitizer properties has attracted significant attention in the field of biomedicine, particularly in cancer therapy. This article describes the latest applications of the porphyrin ligand-based family of PCNs in cancer chemodynamic therapy (CDT), photodynamic therapy (PDT), sonodynamic therapy (SDT), photothermal therapy (PTT), and combination therapies and offers some observations and reflections on them. AREAS COVERED: This article discusses the use of the PCN family of MOFs in cancer treatment, specifically focusing on chemodynamic therapy, sonodynamic therapy, photodynamic therapy, photothermal therapy, and combination therapy. EXPERT OPINION: Although a large number of PCNs have been developed for use in novel cancer therapeutic approaches, further improvements are needed to advance the use of PCNs in the clinic. For example, the main mechanism of action of PCNs against cancer and the metabolic processes in organisms, and how to construct PCNs that maintain good stability in the complex environment of organisms.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Fotoquimioterapia , Porfirinas , Humanos , Porfirinas/uso terapêutico , Porfirinas/química , Porfirinas/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias/tratamento farmacológico
5.
Pharmaceutics ; 15(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37631285

RESUMO

Metal-organic frameworks (MOFs) combined with sonodynamic therapy (SDT) have been introduced as a new and efficient treatment method. The critical advantage of SDT is its ability to penetrate deep tissues and concentrate energy on the tumor site to achieve a non-invasive or minimally invasive effect. Using a sonosensitizer to generate reactive oxygen species (ROS) under ultrasound is the primary SDT-related method of killing tumor cells. In the presence of a sonosensitizer, SDT exhibits a more lethal effect on tumors. The fast development of micro/nanotechnology has effectively improved the efficiency of SDT, and MOFs have been broadly evaluated in SDT due to their easy synthesis, easy surface functionalization, high porosity, and high biocompatibility. This article reviews the main mechanism of action of sonodynamic therapy in cancer treatment, and also reviews the applications of MOFs in recent years. The application of MOFs in sonodynamic therapy can effectively improve the targeting ability of SDT and the conversion ability of reactive oxygen species, thus improving their killing ability on cancer cells. This provides new ideas for the application of micro/nano particles in SDT and cancer therapy.

6.
Adv Healthc Mater ; 12(28): e2301316, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37531238

RESUMO

Critical limb ischemia, the final course of peripheral artery disease, is characterized by an insufficient supply of blood flow and excessive oxidative stress. H2 S molecular therapy possesses huge potential for accelerating revascularization and scavenging intracellular reactive oxygen species (ROS). Moreover, it is found that BMP6 is the most significantly up-expressed secreted protein-related gene in HUVECs treated with GYY4137, a H2 S donor, based on the transcriptome analysis. Herein, a UIO-66-NH2 @GYY4137@BMP6 co-delivery nanoplatform to strengthen the therapeutic effects of limb ischemia is developed. The established UIO-66-NH2 @GYY4137@BMP6 nanoplatform exerts its proangiogenic and anti-oxidation functions by regulating key pathways. The underlying molecular mechanisms of UIO-66-NH2 @GYY4137@BMP6 dual-loading system lie in the upregulation of phosphorylated YAP/TAZ and Jun to promote HUVECs proliferation and downregulation of phosphorylated p53/p21 to scavenge excessive ROS. Meanwhile, laser-doppler perfusion imaging (LDPI), injury severity evaluation, and histological analysis confirm the excellent therapeutic effects of UIO-66-NH2 @GYY4137@BMP6 in vivo. This work may shed light on the treatment of critical limb ischemia by regulating YAP, Jun, and p53 signaling pathways based on gas-protein synergistic therapy.


Assuntos
Isquemia Crônica Crítica de Membro , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Morfogenética Óssea 6/metabolismo
7.
Molecules ; 27(21)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36363993

RESUMO

With the continuous evolution of bacteria and the constant use of traditional antibiotics, the emergence of drug-resistant bacteria and super viruses has attracted worldwide attention. Antimicrobial therapy has become the most popular and important research field at present. Coordination Polymer (CP) and/or metal-organic framework (MOF) platforms have the advantages of a high biocompatibility, biodegradability, and non-toxicity, have a great antibacterial potential and have been widely used in antibacterial treatment. This paper reviewed the mechanism and antibacterial effect of three typical MOFs (pure Ag-MOFs, hybrid Ag-MOFs, and Ag-containing-polymer @MOFs) in silver-based coordination polymers. At the same time, the existing shortcomings and future views are briefly discussed. The study on the antibacterial efficacy and mechanism of Ag-MOFs can provide a better basis for its clinical application and, meanwhile, open up a novel strategy for the preparation of more advanced Ag-contained materials with antibacterial characteristics.


Assuntos
Estruturas Metalorgânicas , Prata , Prata/farmacologia , Polímeros/farmacologia , Antibacterianos/farmacologia , Estruturas Metalorgânicas/farmacologia
8.
Expert Opin Drug Deliv ; 19(10): 1183-1202, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35426756

RESUMO

INTRODUCTION: Metal-organic frameworks (MOFs) are one of the typical coordination polymers which constructed by metal ions/clusters and multitopic organic ligands. Compared with traditional porous materials, MOFs have the advantages of significant porosity, large specific surface area, adjustable chemical composition, and structure tailorability, these unique features make them a promising candidate for controlled drug delivery. AREAS COVERED: This review aims to summarize recent advances in the development of MOFs for drug delivery, in particular, focusing on its ability to deliver various drugs and their release mechanism, as well as the in vivo and in vitro biological evaluation. Moreover, the future research directions of MOFs for clinical treatment are also outlined. EXPERT OPINION: Although large numbers of MOFs have been developed as nanocarriers for drug delivery, further improvements are still needed to advance the application of MOFs in the clinic. For example, the circulation mechanism and degradation process of MOFs in vivo, the efficiency and pharmacokinetics of drugs in vivo, and the biological evaluation of MOFs in the controlled release of drugs. The present review work main focus on the recent progress of MOFs as effective nanocarriers for drug delivery and to examine some challenges and directions for its further clinical applications.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Sistemas de Liberação de Medicamentos , Porosidade , Polímeros/química , Metais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA