Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2301321, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054603

RESUMO

Acoustic microfluidic chips, fabricated by combining lithium niobate (LiNbO3 ) with polydimethylsiloxane (PDMS), practically find applications in biomedicine. However, high-strength direct bonding of LiNbO3 substrate with PDMS microchannel remains a challenge due to the large mismatching of thermal expansion coefficient at the interface and the lack of bonding theory. This paper elaborately reveals the bonding mechanisms of PDMS and LiNbO3 , demonstrating an irreversible bonding method for PDMS-LiNbO3 heterostructures using oxygen plasma modification. An in-situ monitoring strategy by using resonant devices is proposed for oxygen plasma, including quartz crystal microbalance (QCM) covered with PDMS and surface acoustic wave (SAW) fabricated by LiNbO3 . When oxygen plasma exposure occurs, surfaces are cleaned, oxygen ions are implanted, and hydroxyl groups (-OH) are formed. Upon interfaces bonding, the interface will form niobium-oxygen-silicon covalent bonds to realize an irreversible connection. A champion bonding strength is obtained of 1.1 MPa, and the PDMS-LiNbO3 acoustic microfluidic chip excels in leakage tests, withstanding pressures exceeding 60 psi, outperforming many previously reported devices. This work addresses the gap in PDMS-LiNbO3 bonding theory and advances its practical application in the acoustic microfluidic field.

2.
ACS Appl Mater Interfaces ; 15(36): 43135-43144, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37590916

RESUMO

The emerging type II Weyl semimetal 1T' MoTe2 as a promising material in polarization-sensitive photodetectors has aroused much attention due to its narrow bandgap and intrinsic in-plane anisotropic crystal structure. However, the semimetal properties lead to a large dark current and a low response. Herein, we demonstrate for the first time an all-2D semimetal MoTe2/MoS2 van der Waals (vdWs) heterojunction to improve the performance of the photodetectors and realize polarization-sensitive, self-powered, and broadband photodetection and imaging. Owing to the built-in electric field of the heterojunction, the device achieves a self-powered photoresponse ranging from 520 to 1550 nm. Under 915 nm light illumination, the device demonstrates outstanding performance, including a high responsivity of 79 mA/W, a specific detectivity of 1.2 × 1010 Jones, a fast rise/decay time of 180/202 µs, and a high on/off ratio of 1.3 × 10.3 Wavelength-dependent photocurrent anisotropic ratio is revealed to vary from 1.10 at 638 nm to 2.24 at 1550 nm. Furthermore, we demonstrate the polarization imaging capabilities of the device in scattering surroundings, and the DoLP and AoLP images achieve 78% and 112% contrast enhancement, respectively, compared to the S0. This work opens up new avenues to develop anisotropic semimetals heterojunction photodetectors for high-performance polarization-sensitive photodetection and next-generation polarized imaging.

3.
Nano Lett ; 23(4): 1181-1188, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36753056

RESUMO

This work reports on quantum dots (QDs) in perovskite photodetectors showing high optoelectronic performance via quantum-dot-assisted charge transmission. The self-powered broad-band photodetector constructed with SnS QDs in FAPb0.5Sn0.5I3 perovskite can capture incoming optical signals directly at zero bias. The QDs-in-perovskite photodetector exhibits a high sensitivity in the wavelength range from 300 to 1000 nm. Its responsivity at 850 nm reaches 521.7 mA W-1, and a high specific detectivity of 2.57 × 1012 jones can be achieved, which is well beyond the level of previous self-powered broad-band photodetectors. The capability of quantum-dot-in-perovskite photodetectors as data receivers has been further demonstrated in a visible-light communication application.

4.
ISA Trans ; 138: 603-610, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36841720

RESUMO

Scanning acoustic microscopy (SAM) technique has been applied to defect inspection in electronic devices. With the increase of packaging density, detection of the micro-defects in high density devices becomes more and more challenging. The SAM test is suffering from sacrificing the spatial resolution to reach a certain penetration depth of the ultrasonic waves. So it is necessary to enhance the resolution level of the SAM image. In this paper, a wavelet based resolution enhancement technique was investigated to reconstruct a high quality image for SAM test of the flip chip packages. The stationary wavelet transform was adopted to decompose the captured SAM image into four frequency subbands, and the high frequency subbands were enhanced by adding the difference matrix in the intermediate stage, and a super resolution SAM image was derived from combining all the subbands by using the Inverse Discrete Wavelet Transform. Then the solder joints segmented from the SR-SAM image were classified by using the SVM algorithm. The results validated that the proposed technique is effective to improve the detection accuracy of SAM test.

5.
Nanotechnology ; 33(17)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35026737

RESUMO

Herein, we develop a novel strategy for preparing all-inorganic cesium lead halide (CsPbX3, X = Cl, Br, I) perovskite nanocrystals (NCs)@Zn-based metal-organic framework (MOF) composites through interfacial synthesis. The successful embedding of fluorescent perovskite NCs in Zn-MOFs is due to thein situconfined growth, which is attributed to the re-nucleation of water-triggered phase transformation from Cs4PbBr6to CsPbBr3. The controllable synthesis of mixed-halide based composites with various emission wavelength can be achieved by adding the desired amount of halide (Cl or I) salts in the re-nucleation process. More importantly, the anion exchange reaction is inhibited among various composites with different halogen atoms by being trapped in MOFs. Besides, a white light-emitting diode (WLED) is produced using a blue LED chip with the green-emitting and red-emitting composites, which has a color coordinate of (0.3291, 0.3272) and a wide color gamut. This work provides a novel route to achieving perovskite NCs growth in MOFs, which also can be extended to the other NCs embedded in frames as well.

6.
ACS Appl Mater Interfaces ; 13(38): 45744-45757, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34545739

RESUMO

All-inorganic CsPbCl3 perovskite in ultraviolet (UV) detection is drawing increasing interest owing to its UV-matchable optical band gap, ultrahigh UV stability, and superior inherent optoelectronic properties. Almost all of the reported CsPbCl3 photodetectors employ CsPbCl3 nano- or microstructures as sensitive components, while CsPbCl3 polycrystalline film-based self-powered photodetectors are rarely studied on account of the terrible precursor solubility. Herein, a novel sequential vapor-deposition technique is demonstrated to fabricate CsPbCl3 polycrystalline film for the first time. High-quality CsPbCl3 films with excellent optical, electronic, and morphological features are obtained. A self-powered photodetector based on the CsPbCl3 film is constructed without any charge transport layer, showing a high UV detection performance. A thin p-type PbS buffer layer is further introduced to passivate the surface defects of the CsPbCl3 layer and decrease the interfacial energy barrier by forming a type-II heterojunction, contributing to a faster hole extraction rate and a suppressed dark current level. The best-performing device achieves an ultrafast response time of 1.92 µs, an ultrahigh on/off ratio of 2.22 × 105, and a responsivity of 0.22 A/W upon 375 nm UV illumination at 0 V bias. This comprehensive performance is the best among all of the CsPbCl3 photodetectors reported to date. The as-prepared photodetectors also present an eminent UV irradiation and long-term durability in ambient air. Furthermore, a large-area and uniform 625-pixel UV image sensor is fabricated and attains a prominent imaging capability. Our work opens a new avenue for the scalable production of CsPbCl3-based optoelectronics.

7.
ACS Appl Mater Interfaces ; 13(37): 44509-44519, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34495632

RESUMO

Hybrid perovskite photodetectors generally exhibit brilliant performance for photodetecting in the visible spectrum but poor detectability in the solar-blind ultraviolet (UV) region. To break through the bottleneck, we demonstrate a novel strategy to broaden the spectral response of perovskite photodetectors to the solar-blind UV region through phosphor encapsulation. The high photoluminescence quantum yield trichromatic phosphor capping layer achieves an extended spectral response to the solar-blind UV region through effectively down-converting the incident UV light into visible light. In addition, an external quantum efficiency of up to 12.13%@265 nm is achieved without bias voltage, while the initial value is near zero. The corresponding spectral responsivity and detectivity are 0.0269 A/W and 7.52 × 1011 Jones, respectively. Thus, the photodetectors show a high photocurrent and on/off ratio, increasing by roughly 2 orders of magnitude. Moreover, the photodetectors exhibit a large linear dynamic range of 105 dB, fast response times of 50.16/51.99 µs, and excellent stability. The practical applications for flame detection and UV-based communication are further explored. This work provides a new way to achieve UV light detection based on perovskite photodetectors. Perhaps, it may also be a promising alternative for wide-band gap semiconductors to realize the urgent pursuit of UV detection.

8.
ACS Appl Mater Interfaces ; 13(30): 35949-35960, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34261312

RESUMO

Researchers have focused on perovskite-based ultraviolet photodetectors due to their significance in fundamental scientific and practical applications. However, toxicity and instability hold back their mass production and commercialization. The lead-free Cs2AgBiBr6 double perovskite, promised to be an alternative, is fabricated mostly by spin coating, which restricts the practical application in high-resolution image sensors. Herein, we demonstrate a sequential vacuum evaporation method for the fabrication of the Cs2AgBiBr6 film. A self-powered ultraviolet photodetector based on the evaporated Cs2AgBiBr6 thin film is further constructed without any carrier-transport layers, for the first time. The best-performing device has a high on/off ratio of 6.6 × 103, and its response time is fast, less than 6.13 µs. Moreover, the as-prepared devices exhibit salient stability under harsh operational conditions (continuous illumination, high temperature, and humidity). In addition, the pixelated image sensor containing a 25 × 25 Cs2AgBiBr6 photodetector array achieves a proof-of-concept special pattern recognition. Our work paves the way for new-generation ultraviolet image sensors composed of environmentally friendly and high-performance perovskite photodetector arrays.

9.
Nanotechnology ; 31(35): 355302, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32422626

RESUMO

Metal nanoparticles (NPs) are promising bonding materials to replace Sn alloys in fine size Cu-Cu bonding. However, the method of rapidly patterning NPs on solder joints with sizes less than 30 µm is one of the main barriers that impede the practical applications of NPs in Cu-Cu bonding, especially in mass production. In this paper, a novel method of patterning Ag NPs on Cu pads by selective wetting was introduced. Cu pads with diameters down to 5 µm were coated with Ag NPs successfully. When sizes of Cu pads were larger than 10 µm, high density could be achieved and the ratio of diameters to pitches of Cu pads could reach 2/3. Furthermore, the thickness and the coverage of the Ag NPs layer could be raised by repeating coating. In the bonding test, the shear strength increased significantly with the increase of the bonding temperature and the bonding time. It could reach 22.92 MPa after sintering for 5 min at 250 °C under a bonding pressure of 20 MPa in N2. With the aforementioned advantages, patterning NPs by selective wetting will be one of the potential methods for applying NPs to Cu pads in Cu-NPs-Cu bonding.

10.
Nanomaterials (Basel) ; 9(12)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31835336

RESUMO

All inorganic cesium lead halide (CsPbX3, X = Cl, Br, I) perovskite nanocrystals (PNCs) exhibit promising applications in light-emitting devices due to their excellent photophysical properties. Herein, we developed a low-cost and convenient method for the preparation of CsPbX3 PNCs in a multiligand-assisted reaction system where peanut oil is applied as a ligand source. The mixed-halide PNCs with tunable optical-band gap were prepared by mixing the single-halide perovskite solutions at room temperature. The resulting PNCs had good monodispersity, with dimensions of 8-10 nm, high photoluminescence quantum yield (96.9%), narrow emission widths (15-34 nm), and tunable emission wavelength (408-694 nm), covering the entire visible spectrum. Additionally, various morphologies of PNCs, such as nanospheres, nanocubes, and nanowires, were obtained by controlling reaction temperature and time, and the amount of oleamine with multiple ligands in peanut oil potentially playing a dominant role in the nucleation/growth processes of our PNCs. Finally, the resulting CsPbBr3 PNCs were employed to develop a white light-emitting diode (WLED), demonstrating the potential lighting applications for our method.

11.
ACS Appl Mater Interfaces ; 11(49): 46368-46378, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31714054

RESUMO

Humidity sensors have attracted intense interest in various fields because of the importance of humidity detection. Different methods have been adopted to enhance sensing performances of humidity sensors, while it is challenging for researchers to avoid the invalidation of the sensors after being wet. Here, we, for the first time, introduce self-assembly MoS2/Cu(OH)2 nanowires fabricated by liquid self-spreading-coating-evaporating as sensing materials and present MoS2/Cu(OH)2 nanowire-based quartz crystal microbalance gamut humidity sensors with superior sensitivity and self-recovery ability. The sensors deliver a remarkable sensitivity (60.8 Hz/% RH) under a wide range (0-97% RH) with fast response (1.9 s)/recovery time (3.8 s) and upgrade self-recovery ability that can maintain their original performances even after being wet, frozen, and heated or immersed in water. The sensors are also employed to monitor water counting, dew alarming, and human breathing (within 4 s), further showing their ultrahigh sensitivity for water molecules. The underlying humidity-sensing mechanism is interpreted by density functional theory calculations and in-situ Fourier transform infrared spectra experiments adequately, revealing that the high sensing performances are attributed to abundant adsorption sites and physisorption of water molecules. Our work proposes a strategy for transferring materials to arbitrary nanostructures swiftly and demonstrates new perspectives for highly sensitive humidity detection as well as self-recovery ability.

12.
Nanoscale Res Lett ; 14(1): 85, 2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30850919

RESUMO

Hybrid MoS2/reduced graphene aerogels with rich micro-pore are fabricated through a hydrothermal method, followed by freeze-drying and annealing treatment. The porous structure could act as an electrode directly, free of binder and conductive agent, which promotes an improved electron transfer, and provides a 3D network for an enhanced ion transport, thus leading to an increased capacity and stable long cycle stability performance. Notably, the specific capacity of MoS2/reduced graphene aerogel is 1041 mA h g-1 at 100 mA g-1. Moreover, reversible capacities of 667 mA h g-1 with 58.6% capacity retention are kept after 100 cycles. The outstanding performance is beneficial from the synergistic effect of the MoS2 nanostructure and graphene conductive network, as well as the binder-free design. These results provide a route to integrate transition-metal-dichalcogenides with graphene to fabricate composites with rich micro-pores and a three-dimensional network for energy storage devices.

13.
Inorg Chem ; 58(4): 2533-2542, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30702867

RESUMO

In this work, we studied the effect of liquid-phase redox cycling on the size of Cu nanoparticles and oxides. The mixed solution of sodium hydroxide and ammonium persulfate was applied as the oxidation system at room temperature, and ascorbic acid was used as reduction agent at 80 °C in the cycling process. It was found that pristine copper particles with average size of around 800 nm and wide distribution from 300 to 1300 nm could be turned into the resulting particles with the average size of around 162.3 nm with the distribution from 75 to 250 nm after 5 redox cycles. It was also observed that uniform copper oxide nanowires formed after 5 oxidation cycles could be easily reduced into fine copper nanoparticles. The critical tuning factors including the precursor size, morphology, defects, reaction time, and the way of adding oxidant were investigated. It was suggested that the synergetic driving effect of chemical reduction and nanostructure thermodynamic instability in solution accounted for the size reformation of the copper nanoparticles. This proposed method of size-shrinking could be developed as a general strategy for large-scale tuning the properties of copper nanoparticles for wide applications and extended to other metal particles as well.

14.
Nanoscale Res Lett ; 13(1): 394, 2018 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-30519820

RESUMO

We propose a novel one-step exposure method for fabricating three-dimensional (3D) suspended structures, utilizing the diffraction of mask patterns with small line width. An optical model of the exposure process is built, and the 3D light intensity distribution in the photoresist is calculated based on Fresnel-Kirchhoff diffraction formulation. Several 3D suspended photoresist structures have been achieved, such as beams, meshes, word patterns, and multilayer structures. After the pyrolysis of SU-8 structures, suspended and free-standing 3D carbon structures are further obtained, which show great potential in the application of transparent electrode, semitransparent solar cells, and energy storage devices.

15.
Nanomicro Lett ; 10(2): 34, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30393683

RESUMO

Metal halide perovskite solar cells (PSCs) have attracted extensive research interest for next-generation solution-processed photovoltaic devices because of their high solar-to-electric power conversion efficiency (PCE) and low fabrication cost. Although the world's best PSC successfully achieves a considerable PCE of over 20% within a very limited timeframe after intensive efforts, the stability, high cost, and up-scaling of PSCs still remain issues. Recently, inorganic perovskite material, CsPbBr3, is emerging as a promising photo-sensitizer with excellent durability and thermal stability, but the efficiency is still embarrassing. In this work, we intend to address these issues by exploiting CsPbBr3 as light absorber, accompanied by using Cu-phthalocyanine (CuPc) as hole transport material (HTM) and carbon as counter electrode. The optimal device acquires a decent PCE of 6.21%, over 60% higher than those of the HTM-free devices. The systematic characterization and analysis reveal a more effective charge transfer process and a suppressed charge recombination in PSCs after introducing CuPc as hole transfer layer. More importantly, our devices exhibit an outstanding durability and a promising thermal stability, making it rather meaningful in future fabrication and application of PSCs.

16.
ACS Appl Mater Interfaces ; 10(51): 44815-44824, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30461260

RESUMO

Water collection has been extensively researched due to its potential for mitigating the water scarcity in arid and semiarid regions. Numerous structures mimicking the fog-harvesting strategy of organisms have been fabricated for improving water-collecting efficiency. In this contribution, we demonstrate four-level wedge-shaped tracks inspired by leaf vein for enhancing directional water collection. Superhydrophilic Cu(OH)2 nanowires are introduced and prepared on flexible hydrophobic polyethylene terephthalate (PET) substrates by alkali-assisted surface oxidation at room temperature. They provide abundant capillary paths for promoting droplet absorption and forming water film tracks. Then, the hierarchical wedge-shaped tracks enable the water to be transported to a certain accumulation region spontaneously owing to the continuous Young-Laplace pressure difference. As a result, the four-level wedge-shaped tracks on PET substrate achieve the highest water-collecting efficiency, increasing by nearly 1150 and 510% compared to the bare PET and Cu(OH)2 nanowires on PET, respectively. After being bent for 105 cycles at a radius of 10 mm, the samples can still preserve high efficiency, indicating that the synthetic structures possess outstanding durability. Our approach provides a novel strategy for water collection and paves ways for directional liquid transportation and microfluidic devices.

17.
Sensors (Basel) ; 18(11)2018 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-30423883

RESUMO

Three-dimensional (3D) measurement of microstructures has become increasingly important, and many microscopic measurement methods have been developed. For the dimension in several millimeters together with the accuracy at sub-pixel or sub-micron level, there is almost no effective measurement method now. Here we present a method combining the microscopic stereo measurement with the digital speckle projection. A microscopy experimental setup mainly composed of two telecentric cameras and an industrial projection module is established and a telecentric binocular stereo reconstruction procedure is carried out. The measurement accuracy has firstly been verified by performing 3D measurements of grid arrays at different locations and cylinder arrays with different height differences. Then two Mitutoyo step masters have been used for further verification. The experimental results show that the proposed method can obtain 3D information of the microstructure with a sub-pixel and even sub-micron measuring accuracy in millimeter scale.

18.
Appl Spectrosc ; 72(11): 1632-1644, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30109810

RESUMO

The Raman background arising from optical fiber materials poses a critical problem for fiber optic surface-enhanced Raman spectroscopy (SERS). A novel filter is developed to fit the optical fiber background from the measured SERS spectrum of the target sample. The general model of the filter is built by incorporating a weighted term of matching the similarity between the estimated background spectrum and the measured background spectrum into the classic Savitzky-Golay (SG) smoothing filter model. Through respectively selecting Euclidean cosine coefficient (ECos) and Pearson correlation coefficient (PCor) as the similarity index, two different models of the weighted SG smoothing filter are derived and named as SG-ECos and SG-PCor accordingly. Furthermore, the algorithm is presented, implemented, successfully applied to experimentally measured SERS spectra of rhodamine 6G and crystal violet, and validated with mathematically simulated Raman spectra. Experimental and simulation results show that the SG-ECos filter is effective, fast, flexible, and of certain anti-noise capability in background fitting. It is suggested that the proposed filter may be also applicable for other Raman spectra measurements to remove spectral contaminants originated from sampling substrates such as glass slides.

19.
Sci Rep ; 7(1): 6681, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28751731

RESUMO

To push the energy density limit of supercapacitors, proper pseudocapacitive materials with favorable nanostructures are urgently pursued. Ternary transition metal sulfides are promising electrode materials due to the better conductivity and higher electrochemical activity in comparison to the single element sulfides and transition metal oxides. In this work, we have successfully synthesized porous CuCo2S4 nanorod array (NRAs) on carbon textile through a stepwise hydrothermal method, including the growth of the Cu-Co precursor nanowire arrays and subsequent conversion into CuCo2S4 NRAs via anion exchange reaction. The CuCo2S4 NRAs electrode exhibits a greatly enhanced specific capacitance and an outstanding cycling stability. Moreover, an asymmetric supercapacitor using the CuCo2S4 NRAs as positive electrode and activated carbon as negative electrode delivers a high energy density of 56.96 W h kg-1. Such superior performance demonstrate that the CuCo2S4 NRAs are promising materials for future energy storage applications.

20.
ACS Appl Mater Interfaces ; 9(27): 22361-22368, 2017 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-28614655

RESUMO

Power packs integrating both photovoltaic parts and energy storage parts have gained great scientific and technological attention due to the increasing demand for green energy and the tendency for miniaturization and multifunctionalization in electronics industry. In this study, we demonstrate novel integration of perovskite solar cell and solid-state supercapacitor for power packs. The perovskite solar cell is integrated with the supercapacitor based on common carbon electrodes to hybridize photoelectric conversion and energy storage. The power pack achieves a voltage of 0.84 V when the supercapacitor is charged by the perovskite solar cell under the AM 1.5G white light illumination with a 0.071 cm2 active area, reaching an energy storage proportion of 76% and an overall conversion efficiency of 5.26%. When the supercapacitor is precharged at 1.0 V, an instant overall output efficiency of 22.9% can be achieved if the perovskite solar cell and supercapacitor are connected in series, exhibiting great potential in the applications of solar energy storage and flexible electronics such as portable and wearable devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA