Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(37): 16258-16268, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39146316

RESUMO

Perfluorohexanesulfonic acid (PFHxS), an emerging short-chain per- and polyfluoroalkyl substance, has been frequently detected in aquatic environments. Adverse outcome pathway studies have shown that perfluorinated compounds impair lipid homeostasis through peroxisome proliferator activated receptors (PPARs). However, many of these studies were performed at high concentrations and may thus be a result of overt toxicity. To better characterize the molecular and key events of PFHxS to biota, early life-stage zebrafish (Danio rerio) were exposed to concentrations detected in the environment (0.01, 0.1, 1, and 10 µg/L). Lipidomic and transcriptomic evaluations were integrated to predict potential molecular targets. PFHxS significantly impaired lipid homeostasis by the dysregulation of glycerophospholipids, fatty acyls, glycerolipids, sphingolipids, prenol lipids, and sterol lipids. Informatic analyses of the lipidome and transcriptome indicated alterations of the PPAR signaling pathway, with downstream changes to retinol, linoleic acid, and glycerophospholipid metabolism. To assess the role of PPARs, potential binding of PFHxS to PPARs was predicted and animals were coexposed to a PPAR antagonist (GW6471). Molecular simulation indicated PFHxS had a 27.1% better binding affinity than oleic acid, an endogenous agonist of PPARα. Antagonist coexposures rescued impaired glycerophosphocholine concentrations altered by PFHxS. These data indicate PPARα activation may be an important molecular initiating event for PFHxS.


Assuntos
Homeostase , Larva , PPAR alfa , Peixe-Zebra , Animais , Larva/efeitos dos fármacos , Larva/metabolismo , PPAR alfa/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fluorocarbonos , Ácidos Sulfônicos
2.
J Basic Microbiol ; 64(3): e2300424, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38175847

RESUMO

A series of pot trials were undertaken to examine the impact of four arbuscular mycorrhizal fungi (AMF), namely Glomus mosseae (G.m), Glomus etunicatum (G.e), Corymbiglomus tortuosum (C.t), and the combined application of Glomus etunicatum and Corymbiglomus tortuosum (G.e + C.t), on the energy metabolism of amaranth plants grown in soil enriched with selenite at a concentration of 0.5 mg kg-1 . The inoculation of four AMFs resulted in an increase in both amaranth biomass and selenium (Se) content in leaves. The activities of phosphoglucose isomerase (PGI) and glucose-6-phosphate dehydrogenase + 6-phosphogluconate dehydrogenase were observed to decrease when AMFs were inoculated, as compared with the absence of AMF inoculation. The inoculation with G.m, C.t, and G.e + C.t resulted in an increase in succinate dehydrogenase activity; however, the inoculation with G.m, G.e, and G.e + C.t led to an increase in ascorbate oxidase activity. Furthermore, the inoculation of all four AMFs resulted in an increase in cytochrome c oxidase activity and the concentrations of oxidized coenzyme I (NAD) and reduced coenzyme I (NADH). The polyphenol oxidase activity of amaranth plants increased when inoculated with G.m and G.e, whereas it decreased when inoculated with C.t and G.e + C.t. Furthermore, the application of all four AMF treatments resulted in a reduction in adenosine triphosphate (ATP) levels and energy charge. It was worth mentioning that there was a clear inverse relationship between the energy charge and the biomass, Se concentration in the leaves. The findings presented in this research indicated that AMF may have an impact on energy metabolism and ultimately the biomass of amaranth by influencing the uptake of Se.


Assuntos
Amaranthus , Fungos , Micorrizas , NAD , Metabolismo Energético
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA