Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(14): 16679-16690, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32186365

RESUMO

Three homoleptic Pt(II) metal complexes [Pt(imPz)2] (1), [Pt(imiz)2] (2), and [Pt(imMz)2] (3) were synthesized from the treatment of Pt(DMSO)2Cl2 and functional imidazolyl pyrazole in refluxing tetrahydrofuran (THF). Alternatively, the heteroleptic Pt(II) complexes [Pt(imPz)(fppz)] (4), [Pt(imiz)(fppz)] (5), and [Pt(imMz)(fppz)] (6) were obtained from the treatment of a common intermediate [Pt(fppzH)Cl2] with a corresponding imidazolyl chelate. Pt(II) complexes 1, 2, and 5 were studied by single-crystal X-ray diffraction to reveal the corresponding packing arrangement in their crystal lattices, among which both homoleptic complexes 1 and 2 formed monomeric species, while heteroleptic 5 aligned as a dimer with a nonbonding Pt···Pt contact of 3.574 Å. Subsequent photophysical examinations showed that the homoleptic 1-3 and heteroleptic 4-6 exhibited the structured sky-blue ππ* emission and structureless light-green-emitting metal-metal-to-ligand charge transfer (MMLCT) emission in the solid state, respectively. A shortened Pt···Pt interaction of approximately 0.34-0.35 nm was confirmed in thin films of all heteroleptic Pt(II) complexes 4-6 by grazing-incidence X-ray diffraction (GIXD) analyses. Finally, Pt(II) complex 6 was employed as a dopant in the fabrication of organic light-emitting diode (OLED) devices with varied doping ratios, among which OLEDs with only 1 wt % 6 in the SimCP host exhibited a maximum external quantum efficiency (EQE) of 5.8% and CIEx,y values of 0.20, 0.31. In contrast, OLEDs using a nondoped architecture (i.e., 100% of 6 in the emitting layer (EML)) achieved a maximum EQE of 26.8%, current efficiency (CE) of 91.7 cd A-1, and power efficiency (PE) of 80.1 lm·W-1 and CIEx,y values of 0.41, 0.55, manifesting their versatility in various degrees of stacking assemblies and hence facile color-tuning capability on OLEDs.

2.
Inorg Chem ; 57(14): 8287-8298, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29969033

RESUMO

Functional 2-pyrazolyl-6-phenylpyridine chelates-namely, (pzpyphBu)H2 and (pzpyphCF3)H2 and phosphines-are successfully employed in the preparation of emissive Ir(III) metal complexes, for which the reaction with phosphine such as PPh3, PPh2Me, and PPh2(CH2Ph) afford corresponding Ir(III) complexes [Ir(pzpyphBu)(PPh3)2H] (1a), [Ir(pzpyphCF3)(PPh2R)2H] (2a-2c), R = Ph, Me, CH2Ph, which also show an equatorial coordinated hydride. In contrast, treatment with 1,2-bis(diphenylphosphino)benzene (dppb) and 1,2-bis(diphenylphosphino)ethane (dppe) yields the isomeric products [Ir(pzpyphBu)(dppb)H] (3a) and [Ir(pzpyphBu)(dppe)H] (3b), for which the distinctive, axial hydride undergoes rapid chlorination, forming chlorinated complexes [Ir(pzpyphBu)(dppb)Cl] (4a) and [Ir(pzpyphBu)(dppe)Cl] (4b), respectively. On the other hand, upon extensive heating of 2c, one of its coordinated PPh2(CH2Ph) exhibits benzyl cyclometalation and hydride elimination to afford [Ir(pzpyphCF3)(PPh2R)(PPh2R')] (5c and 6c) R = CH2Ph and R' = CH2( o-C6H4) as the kinetic and thermodynamic products, respectively. Their structural, photophysical, and electrochemical properties are examined and further affirmed by the computational approaches.

3.
ACS Omega ; 3(5): 4760-4765, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458695

RESUMO

We study the effects of using an emitting material (Pt(II) bis(3-(trifluoromethyl)-5-(2-pyridyl)pyrazolate-Pt(fppz)2) characterized by a preferred horizontal dipole alignment and a nearly unitary quantum yield regardless of concentration on the lifetime of organic light-emitting devices (OLEDs). Using such a material as a dopant in increasingly higher concentrations is found to lead to an increase in device stability, a trend that is different from that commonly observed with conventional OLED guests. The results are consistent with the newly discovered exciton-polaron-induced aggregation degradation mechanism of OLED materials. When this emitter is used as a neat emission layer, the material is already in a highly aggregated state, and the device is no longer affected by exciton-polaron interactions. The results demonstrate the potential stability benefits of using such materials in OLEDs.

4.
Chemistry ; 24(3): 624-635, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29027287

RESUMO

A class of neutral tris-bidentate IrIII metal complexes incorporating a diphosphine as a chelate is prepared and characterized here for the first time. Treatment of [Ir(dppBz)(tht)Cl3 ] (1, dppBz=1,2-bis(diphenylphosphino)benzene, tht=tetrahydrothiophene) with fppzH (3-trifluoromethyl-5-(2'-pyridyl)-1H-pyrazole) afforded the dichloride complexes, trans-(Cl,Cl)[Ir(dppBz)(fppz)Cl2 ] (2) and cis-(Cl,Cl)[Ir(dppBz)(fppz)Cl2 ] (3). The reaction of 3 with the dianionic chelate precursor, 5,5'-di(trifluoromethyl)-3,3'-bipyrazole (bipzH2 ) or 5,5'-(1-methylethylidene)-bis(3-trifluoromethyl-1H-pyrazole) (mepzH2 ), in DMF gave the tris-bidentate complex [Ir(dppBz)(fppz)(bipz)] (4) or [Ir(dppBz)(fppz)(mepz)] (5), respectively. In contrast, a hydride complex [Ir(dppBz)(fppz)(bipzH)H] (6) was isolated instead of 4 in protic solvent, namely: diethylene glycol monomethyl ether (DGME). All complexes 2-6 are luminescent in powder form and thin films where the dichlorides (2, 3) emit with maxima at 590-627 nm (orange) and quantum yields (QYs) up to 90 % whereas the tris-bidentate (4, 5) and hydride (6) complexes emit at 455-458 nm (blue) with QYs up to 70 %. Hybrid (time-dependent) DFT calculations showed considerable metal-to-ligand charge transfer contribution to the orange-emitting 2 and 3 but substantial ligand-centered 3 π-π* transition character in the blue-emitting 4-6. The dppBz does not participate in the radiative transitions in 4-6, but it provides the rigidity and steric bulk needed to promote the luminescence by suppressing the self-quenching in the solid state. Fabrication of an organic light-emitting diode (OLED) with dopant 5 gave a deep-blue CIE chromaticity of (0.16, 0.15). Superior blue emitters, which are vital in OLED applications, may be found in other neutral IrIII complexes containing phosphine chelates.

5.
Inorg Chem ; 56(16): 10054-10060, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28796502

RESUMO

Tetradentate chelates bearing tripodal arranged terpyridine and a functional pyrazole unit (i.e., L1-H and L2-H) were employed in preparation of Ir(III) complexes [Ir(L1)Cl2] (1) and [Ir(L2)Cl2] (2); subsequent chloride-to-bipyrazolate substitution gave [Ir(L1)(bipz)] (3) and [Ir(L2)(bipz)] (4). Single-crystal X-ray structural studies on 1 and 3 showed the possession of a tetradentate chelate, whereas the remaining cis-sites are occupied by either dual chlorides or the bipz chelate, respectively. Sky blue organic light-emitting diode with peak efficiencies (10.1%, 19.8 cd·A-1, and 20.4 lm·W-1) was successfully fabricated using 3 (or 4) as dopant emitter, highlighting the potential application of this class of Ir(III) phosphor.

6.
Inorg Chem ; 55(13): 6394-404, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27302056

RESUMO

Pt(II) metal complexes [Pt(C^C)(X^X)] comprising three functional dianionic azolate chelates (X^XH2: bipzH2 = 5,5'-di(trifluoromethyl)-3,3'-bipyrazole, bitzH2 = 5,5'-di(trifluoromethyl)-3,3'-bi-1,2,4-triazole, and phpzH2 = 3-(trifluoromethyl)-5-(4-(trifluoromethyl)phenyl)-1H-pyrazole), together with three different charge-neutral dicarbene chelates (i.e., C^C = 1,1'-methylene bis(3-methyl-imidazol-2-ylidene), 1,1'-methylene bis(3-isopropyl-imidazol-2-ylidene), and 1,1'-(propane-1,3-diyl) bis(3-isopropyl-imidazol-2-ylidene), were synthesized and found to show bright solid-state emission depending on the associated X^X and C^C chelates. Pt(II) complexes 1a, 2, and 6 were examined by X-ray diffraction studies, confirming the square-planar skeleton. These Pt(II) metal complexes are found to be nonemissive in degassed solution at RT. The photophysical measurements as neat powder reveals emission maxima ranging from purple to sky blue emission and with high quantum yields for the majority of them. (Time-dependent) density functional theory (DFT/TD-DFT) calculations were executed to elucidate the emission process that was predominated by the combined3LLCT/(3)LMCT/(3)IL character, where LLCT and LMCT and IL stand for ligand-to-ligand charge transfer, ligand-to-metal charge transfer, and intraligand ππ* transition processes. Organic light-emitting devices comprising complex 5a achieved high efficiency (8.9%, 19.4 cd·A(-1), 22.5 lm·W(-1)) with a sky blue emission showing CIEx,y coordinates of (0.18, 0.32).

7.
Adv Mater ; 28(13): 2526-32, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26833629

RESUMO

Organic light-emitting diodes with external quantum efficiency of 38.8% are realized using a Pt-based thin-film emitting layer with photoluminescence quantum yield of 96% and transition dipole ratio of 93%. The emitting dipole orientation of the thin films fabricated using Pt complexes is investigated and the structural relationship between X-ray structural analysis and the structures in thin films are discussed based on quantum chemical calculations.

8.
Inorg Chem ; 54(22): 10811-21, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26529058

RESUMO

A series of three charge-neutral Ir(III) complexes bearing both neutral chelating ligands 4,4'-di-t-butyl-2,2'-bipyridine (dtbbpy) and monoanionic cyclometalated ligands derived from 2-phenylpyridine (ppyH), together with either two monoanionic ligands (i.e., chloride and monodentate pyrazolate) or a single dianionic chelate derived from 5,5'-di(trifluoromethyl)-3,3'-bipyrazole (bipzH2) or 5,5'-(1-methylethylidene)-bis-(3-trifluoromethyl-1H-pyrazole) (mepzH2), was successfully synthesized. These complexes are derived from a common, structurally characterized, Ir(III) intermediate complex [Ir(dtbbpy) (ppy)Cl2] (1), from treatment of IrCl3·3H2O with equal amount of the diimine (N^N) and precursor of the cyclometalated (C^N) ligands in a form of one-pot reaction. Treatment of 1 with various functional pyrazoles afforded [Ir(dtbbpy) (ppy) (pz)Cl] (2), [Ir(dtbbpy) (ppy) (bipz)] (3), and [Ir(dtbbpy) (ppy) (mepz)] (4), which display intense room-temperature emission with λmax spanning the region between 532 and 593 nm in both fluid and solid states. The Ir(III) complexes, 3 and 4, showcase rare examples of three distinctive chelates (i.e., neutral, anionic, and dianionic) assembled around the central Ir(III) cation. Hybrid density functional theory (DFT; B3LYP) electronic structure calculations on 1-4 reveal the lowest unoccupied molecular orbital to be π*(bpy) in character for all complexes and highest occupied molecular orbital (HOMO) offering d(Ir)-π(phenyl) character for 1, 2, and 4 and π(bipz) character for 3. The different HOMO composition of 3 and 4 is also predicted by calculations using pure DFT (BLYP) and wave function (MP2) methods. On the basis of time-dependent DFT calculations, the emissive processes are dominated by the phenyl group-to-bipyridine, ligand(ppy)-to-ligand(bpy) charge transfer admixed with metal-to-ligand transition for all Ir(III) complexes. Organic light emitting diodes were successfully fabricated. A double emitting layer design was adopted in the device architecture using Ir(III) metal complexes 3 and 4, attaining peak external quantum efficiencies, luminance efficiencies, and power efficiencies of 18.1% (59.0 cd/A and 38.6 lm/W) and 16.6% (53.3 cd/A and 33.5 lm/W), respectively.

9.
Dalton Trans ; 44(18): 8406-18, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25413041

RESUMO

Treatment of [IrCl3(tht)3], where tht = tetrahydrothiophene, with two equiv. of phenyl diphenylphosphinite (pdpitH) gave [Ir(pdpitH)(pdpit)(tht)Cl2] (1), which on further reaction with 3-t-butyl-5-(2-pyridyl)-1,2,4-triazole (bptzH) and NaOAc using a one-pot reaction afforded [Ir(pdpit)2(bptz)] (2). In sharp contrast, the reaction of [IrCl3(tht)3], pdpitH, and bptzH in the presence of a stronger base, Na2CO3, afforded a phenyl phenylphosphonite (pppo)-containing Ir(III) complex [Ir(pdpit)(pppo)(bptz)] (3) that reveals a strong PO-H-N inter-ligand hydrogen bond (H-bond), as evidenced by the single crystal X-ray structural analysis. For confirmation, addition of diazomethane to a diethylether solution of 3 led to the isolation of two methylated Ir(III) isomeric complexes, i.e. [Ir(pdpit)(pppoMe)(bptz)] (4) and [Ir(pdpit)(pppo)(bptzMe)] (5), possessing either a PO-Me or N-Me bonding fragment, respectively. The absorption spectrum of 3 in CH2Cl2 resembles that of 4, implying the dominant PO-H character in solution. Despite the prevailing PO-H character both in the solid crystal and in solution, its corresponding emission resembles that of 5, leading us to propose a mechanism incorporating the excited-state inter-ligand proton transfer (ESILPT) from PO-H to N-H isomeric form via the pre-existing PO···H···N hydrogen bond. The thermodynamics of proton transfer tautomerism are discussed on the basis of absorption/emission spectroscopy in combination with computational approaches; additional support is given by the relationship between emission pattern versus the position of protons and methyl substituents. The results demonstrate for the first time a paradigm of excited-state proton transfer for the transition metal complexes in the triplet manifold.


Assuntos
Quelantes/química , Complexos de Coordenação/química , Irídio/química , Nitrogênio/química , Fosfinas/química , Triazóis/química , Ligação de Hidrogênio , Estrutura Molecular , Estereoisomerismo
10.
Inorg Chem ; 53(17): 9366-74, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25139466

RESUMO

Heating of Os3(CO)12 with 6 equiv of 2-(3-(trifluoromethyl)-1H-1,2,4-triazol-5-yl) pyridine (fptzH) in refluxing diethylene glycol monomethyl ether, followed by sequential treatment with stoichiometric Me3NO and addition of PPhMe2, afforded two isomeric mixtures of red-emitting [Os(fptz)2(PPhMe2)2] (1T and 1C), for which the notations T and C stand for the trans and cis-oriented fptz chelates, respectively. Alternatively, preparation of Os(II) complex using a 1:1 mixture of 5,5'-di(trifluoromethyl)-3,3'-di-1,2,4-triazole (dttzH2) and 2,2'-bipyridine (bpy), instead of fptzH, gave isolation of a mononuclear Os(II) complex [Os(bpy)(dttz)(CO)2] (2) in moderate yield. Replacement of CO with PPhMe2 on 2 afforded near-infrared (NIR)-emitting Os(II) complex [Os(bpy)(dttz)(PPhMe2)2] (3). The single-crystal X-ray structural analyses were executed on 1C, 2, and 3 to reveal the structural influence imposed by the various chelates. The photophysical and electrochemical properties were measured and discussed using the results of density functional theory (DFT) and time-dependent DFT calculations. Complex 3 is selected as the dopant to probe its electroluminescent properties by fabrication of the NIR emitting organic light-emitting diodes.

11.
ACS Appl Mater Interfaces ; 5(15): 7341-51, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23863090

RESUMO

Two pyrimidine chelates with the pyridin-2-yl group residing at either the 5- or 4-positions are synthesized. These chelates are then utilized in synthesizing of a new class of heteroleptic Ir(III) metal complexes, namely [Ir(b5ppm)2(fppz)] (1), [Ir(b5bpm)2(fppz)] (2), [Ir(b4bpm)2(fppz)] (3), and [Ir(b5bpm)(fppz)2] (4), for which the abbreviations b5ppm, b5bpm, b4bpm, and fppz represent chelates derived from 2-t-butyl-5-(pyridin-2-yl)pyrimidine, 2-t-butyl-5-(4-t-butylpyridin-2-yl)pyrimidine, 2-t-butyl-4-(4-t-butylpyridin-2-yl)pyrimidine, and 3-trifluoromethyl-5-(pyridin-2-yl) pyrazole, respectively. The single crystal X-ray structural analyses were executed on 1 to reveal their coordination arrangement around the Ir(III) metal element. The 5-substituted pyrimidine complexes 1, 2, and 4 exhibited the first emission peak wavelength (λmax) located in the range 452-457 nm with high quantum yields, whereas the emission of 3 with 4-substituted pyrimidine was red-shifted substantially to longer wavelength with λmax = 535 nm. These photophysical properties were discussed under the basis of computational approaches, particularly the relationship between emission color and the relative position of nitrogen atoms of pyrimidine fragment. For application, organic light-emitting diodes (OLEDs) were also fabricated using 2 and 4 as dopants, attaining the peak external quantum, luminance, and power efficiencies of 17.9% (38.0 cd/A and 35.8 lm/W) and 15.8% (30.6 cd/A and 24.8 lm/W), respectively. Combining sky blue-emitting 2 and red-emitting [Os(bpftz)2(PPh2Me)2] (5), the phosphorescent white OLEDs were demonstrated with stable pure-white emission at CIE coordinate of (0.33, 0.34), and peak luminance efficiency of 35.3 cd/A, power efficiency of 30.4 lm/W, and external quantum efficiency up to 17.3%.

12.
Inorg Chem ; 52(10): 5867-75, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23621364

RESUMO

A tetradentate bis(pyridylpyrazolate) chelate, L, is assembled by connecting two bidentate 3-(trifluoromethyl)-5-(2-pyridyl)pyrazole chelates at the 6 position of the pyridyl fragment with a phenylamido appendage. This chelate was then utilized in the synthesis of three osmium(II) complexes, namely, [Os(L)(CO)2] (4), [Os(L)(PPh2Me)2] (5), and [Os(L)(PPhMe2)2] (6). Single-crystal X-ray structural analyses were executed on 4 and 5 to reveal the bonding arrangement of the L chelate. Phosphine-substituted derivatives 5 and 6 are highly emissive in both solution and the solid state, and their photophysical properties were measured and discussed on the basis of computational approaches. For application, fabrication and analysis of organic light-emitting diodes (OLEDs) were also carried out. The OLEDs using 5 and 6 as dopants exhibit saturated red emission with maximum external quantum efficiencies of 9.8% and 9.4%, respectively, which are higher than that of the device using [Ir(piq)3] as a red-emitting reference sample. Moreover, for documentation, 5 and 6 also achieve a maximum brightness of 19540 cd·m(-2) at 800 mA·cm(-2) (11.6 V) and 12900 cd·m(-2) at 500 mA·cm(-2) (10.5 V), respectively.


Assuntos
Quelantes/química , Compostos Organometálicos/química , Osmio/química , Pirazóis/química , Piridinas/química , Quelantes/síntese química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química
13.
Phys Chem Chem Phys ; 14(25): 9006-15, 2012 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-22618273

RESUMO

A series of 2-pyridyl-pyrazole derivatives 1-4 possessing five-membered ring hydrogen bonding configuration are synthesized, the structural flexibility of which is strategically tuned to be in the order of 1 > 2 > 3 > 4. This system then serves as an ideal chemical model to investigate the correlation between excited-state intramolecular proton transfer (ESIPT) reaction and molecular skeleton motion associated with hydrogen bonds. The resulting luminescence data reveal that the rate of ESIPT decreases upon increasing the structural constraint. At sufficiently low concentration where negligible dimerization is observed, ESIPT takes place in 1 and 2 but is prohibited in 3 and 4, for which high geometry constraint is imposed. The results imply that certain structural bending motions associated with hydrogen bonding angle/distance play a key role in ESIPT. This trend is also well supported by the DFT computational approach, in which the barrier associated with ESIPT is in the order of 1 < 2 < 3 < 4. Upon increasing the concentration in cyclohexane, except for 2, the rest of the title compounds undergo ground-state dimerization, from which the double proton transfer takes place in the excited state, resulting in a relatively blue shifted dimeric tautomer emission (cf. the monomer tautomer emission). The lack of dimerization in 2 is rationalized by substantial energy required to adjust the angle of hydrogen bond via twisting the propylene bridge prior to dimerization.


Assuntos
Prótons , Pirazóis/química , Piridinas/química , Ligação de Hidrogênio , Modelos Moleculares , Teoria Quântica , Espectrometria de Fluorescência , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA